Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glyphosate-resistant 'superweeds' may be less susceptible to diseases

18.07.2012
Scientists searching for clues to understand how superweeds obtain resistance to the popular herbicide glyphosate may have been missing a critical piece of information, a Purdue University study shows.

Glyphosate, the active ingredient in the weed killer sold under the name RoundUp, is the most widely used herbicide in the United States, but some plants have grown resistant to it. This has caused farmers to turn to additional herbicides. While the mechanisms that have led to resistance are not fully known, Bill Johnson, a professor of weed science; Steve Hallett, an associate professor of weed science; and Jessica Schafer, a graduate student in botany and plant pathology, believe that soil microbes may play a role.

Most laboratory tests done to understand glyphosate resistance are done in sterile soil, void of those microbes. Schafer said Purdue's findings, published online early in the journal Weed Science, show that those microbes may play a significant role in how glyphosate affects plants.

"The soil you're growing the plants in is important to the results," Schafer said. "If we're growing in a sterile media, we could get some false positive results because the plants are more tolerant to glyphosate in those conditions."

Hallett and Schafer grew giant ragweed, horseweed and common lambsquarter in both sterile soil and field soil and subjected them to glyphosate. In each soil, strains of weeds both susceptible and resistant to glyphosate were tested.

Both versions of giant ragweed were damaged more from the glyphosate in field soil. The susceptible version of common lambsquarter was also more heavily damaged in field soil. Horseweed fared the same no matter which soil or strain - susceptible or resistant.
The results show that microbes can play an important role in the activity of glyphosate, presumably by invading the glyphosate-weakened plants. The results also suggest that glyphosate-resistant weeds may be more resistant to disease pressure as well.

"Soil microbes can be minor to major contributors to how glyphosate is able to affect plants," Hallett said. "We may be selecting not only for glyphosate resistance, but inadvertently selecting for weeds that have disease resistance as well."

A weed's ability to withstand glyphosate was based on dry shoot and root weight after testing. The sterile soil used in the study came from field soil exposed to gamma radiation to kill microbes and bacteria. The irradiated soil was tested to ensure that its nutrients were not diminished.

Hallett, Johnson and Schafer said further studies would look at how fungi in the soil affect root development, both with and without glyphosate.
"Dirt is a living organism," Johnson said. "It's important to know how all the pieces interact."

The research was conducted with internal funding from Purdue's Department of Botany and Plant Pathology.

Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu

Sources: Steve Hallett, 765 494-7649, halletts@purdue.edu
Bill Johnson, 765-494-4656, wgj@purdue.edu
Jessica Schafer, 765-496-6690 , schafer3@purdue.edu

Ag Communications: (765) 494-2722;
Keith Robinson, robins89@purdue.edu
Agriculture News Page

ABSTRACT

Response of Giant Ragweed (Ambrosia trifida), Horseweed (Conyza canadensis), and Common Lambsquarter (Chenopodium album) Biotypes to Glyphosate in the Presence and Absence of Soil Microorganisms

Jessica R. Schafer, Steven G. Hallett, and William G. Johnson

In previous research conducted on non-weed species, the efficacy of glyphosate was shown to be greater in unsterile soils compared to sterile soils, and that soil microorganisms played an important role in glyphosate efficacy. Conducting greenhouse studies in microbe-free soil may, therefore, produce unreliable data, leading to erroneous conclusions. The objective of this study was to determine the effect of soil microorganisms on the response of glyphosate-resistant and -susceptible biotypes of three problematic weeds of the Midwestern United States: giant ragweed, horseweed and common lambsquarters. A greenhouse dose-response study was conducted on each of the three weed species grown in sterile and unsterile field soil, and the dry weight response of roots and shoots was measured. The three weed species responded differently to glyphosate when grown in the sterile and unsterile soil, that is, in the presence and absence of soil microbes. Soil microbes influenced the response of the susceptible and resistant giant ragweed biotypes and the susceptible common lambsquarters, but not on the tolerant common lambsquarters or either horseweed biotype. The different response of the three species to glyphosate in the presence and absence of soil microbes demonstrates that rhizosphere interactions are fundamental to the mode of action of glyphosate.

These findings suggest that the range of tolerance to glyphosate observed in weeds and the evolution of resistance in weed biotypes may also be influenced by rhizosphere interactions. The soil media used in dose-response screenings to identify susceptible and resistant weed biotypes is very important. Unsterile field soil should be incorporated into growth media when conducting dose-response screenings to avoid false positive results. In addition, researchers performing glyphosate dose-response assays should be aware of these findings.

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>