Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glyphosate-resistant 'superweeds' may be less susceptible to diseases

18.07.2012
Scientists searching for clues to understand how superweeds obtain resistance to the popular herbicide glyphosate may have been missing a critical piece of information, a Purdue University study shows.

Glyphosate, the active ingredient in the weed killer sold under the name RoundUp, is the most widely used herbicide in the United States, but some plants have grown resistant to it. This has caused farmers to turn to additional herbicides. While the mechanisms that have led to resistance are not fully known, Bill Johnson, a professor of weed science; Steve Hallett, an associate professor of weed science; and Jessica Schafer, a graduate student in botany and plant pathology, believe that soil microbes may play a role.

Most laboratory tests done to understand glyphosate resistance are done in sterile soil, void of those microbes. Schafer said Purdue's findings, published online early in the journal Weed Science, show that those microbes may play a significant role in how glyphosate affects plants.

"The soil you're growing the plants in is important to the results," Schafer said. "If we're growing in a sterile media, we could get some false positive results because the plants are more tolerant to glyphosate in those conditions."

Hallett and Schafer grew giant ragweed, horseweed and common lambsquarter in both sterile soil and field soil and subjected them to glyphosate. In each soil, strains of weeds both susceptible and resistant to glyphosate were tested.

Both versions of giant ragweed were damaged more from the glyphosate in field soil. The susceptible version of common lambsquarter was also more heavily damaged in field soil. Horseweed fared the same no matter which soil or strain - susceptible or resistant.
The results show that microbes can play an important role in the activity of glyphosate, presumably by invading the glyphosate-weakened plants. The results also suggest that glyphosate-resistant weeds may be more resistant to disease pressure as well.

"Soil microbes can be minor to major contributors to how glyphosate is able to affect plants," Hallett said. "We may be selecting not only for glyphosate resistance, but inadvertently selecting for weeds that have disease resistance as well."

A weed's ability to withstand glyphosate was based on dry shoot and root weight after testing. The sterile soil used in the study came from field soil exposed to gamma radiation to kill microbes and bacteria. The irradiated soil was tested to ensure that its nutrients were not diminished.

Hallett, Johnson and Schafer said further studies would look at how fungi in the soil affect root development, both with and without glyphosate.
"Dirt is a living organism," Johnson said. "It's important to know how all the pieces interact."

The research was conducted with internal funding from Purdue's Department of Botany and Plant Pathology.

Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu

Sources: Steve Hallett, 765 494-7649, halletts@purdue.edu
Bill Johnson, 765-494-4656, wgj@purdue.edu
Jessica Schafer, 765-496-6690 , schafer3@purdue.edu

Ag Communications: (765) 494-2722;
Keith Robinson, robins89@purdue.edu
Agriculture News Page

ABSTRACT

Response of Giant Ragweed (Ambrosia trifida), Horseweed (Conyza canadensis), and Common Lambsquarter (Chenopodium album) Biotypes to Glyphosate in the Presence and Absence of Soil Microorganisms

Jessica R. Schafer, Steven G. Hallett, and William G. Johnson

In previous research conducted on non-weed species, the efficacy of glyphosate was shown to be greater in unsterile soils compared to sterile soils, and that soil microorganisms played an important role in glyphosate efficacy. Conducting greenhouse studies in microbe-free soil may, therefore, produce unreliable data, leading to erroneous conclusions. The objective of this study was to determine the effect of soil microorganisms on the response of glyphosate-resistant and -susceptible biotypes of three problematic weeds of the Midwestern United States: giant ragweed, horseweed and common lambsquarters. A greenhouse dose-response study was conducted on each of the three weed species grown in sterile and unsterile field soil, and the dry weight response of roots and shoots was measured. The three weed species responded differently to glyphosate when grown in the sterile and unsterile soil, that is, in the presence and absence of soil microbes. Soil microbes influenced the response of the susceptible and resistant giant ragweed biotypes and the susceptible common lambsquarters, but not on the tolerant common lambsquarters or either horseweed biotype. The different response of the three species to glyphosate in the presence and absence of soil microbes demonstrates that rhizosphere interactions are fundamental to the mode of action of glyphosate.

These findings suggest that the range of tolerance to glyphosate observed in weeds and the evolution of resistance in weed biotypes may also be influenced by rhizosphere interactions. The soil media used in dose-response screenings to identify susceptible and resistant weed biotypes is very important. Unsterile field soil should be incorporated into growth media when conducting dose-response screenings to avoid false positive results. In addition, researchers performing glyphosate dose-response assays should be aware of these findings.

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Agricultural and Forestry Science:

nachricht Light green plants save nitrogen without sacrificing photosynthetic efficiency
21.11.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Filling intercropping info gap
16.11.2017 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>