Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Global warming threat seen in fertile soil of northeastern US forests

In ‘vicious cycle,’ heat may boost carbon release into atmosphere, UCI-led study finds
Vast stores of carbon in U.S. forest soils could be released by rising global temperatures, according to a study by UC Irvine and other researchers in today’s online Proceedings of the National Academy of Sciences in Washington, D.C.

The scientists found that heating soil in Wisconsin and North Carolina woodlands by 10 and 20 degrees increased the release of carbon dioxide by up to eight times. They showed for the first time that most carbon in topsoil is vulnerable to this warming effect.

“We found that decades-old carbon in surface soils is released to the atmosphere faster when temperatures become warmer,” said lead author Francesca Hopkins, a doctoral researcher in UCI’s Earth system science department. “This suggests that soils could accelerate global warming through a vicious cycle in which man-made warming releases carbon from soils to the atmosphere, which, in turn, would warm the planet more.”

Soil, which takes its rich, brown color from large amounts of carbon in decaying leaves and roots, stores more than twice as much of the element as does the atmosphere, according to United Nations reports. Previously, it wasn’t known whether carbon housed in soil for a decade or longer would be released faster under higher temperatures, because it’s difficult to measure. The team, using carbon isotopes, discovered that older soil carbon is indeed susceptible to warming.

Forest lands, which contain about 104 billion tons of carbon reserves, have been one of the biggest unknowns in climate change predictions. Northeastern woodlands that were once farm fields are currently one of the Earth’s beneficial carbon sinks, holding nearly 26 billion tons. But climate scientists worry that trees and soils could become sources of greenhouse gas emissions rather than repositories.

“Our results suggest that large stores of carbon that built up over the last century as forests recovered will erode with rising temperatures,” said Susan Trumbore of the Max Planck Institute for Biogeochemistry and UCI, who led the research team, which also included Margaret Torn, head of the Climate & Carbon Sciences Program at Lawrence Berkeley National Laboratory.

Microbes in soil near tree roots, in particular, eat carbon, and it’s then diffused into the air as carbon dioxide, already the largest greenhouse gas in the atmosphere.

“These are carbon dioxide sources that, in effect, we can’t control,” Hopkins said. “We could control how much gasoline we burn, how much coal we burn, but we don’t have control over how much carbon the soil will release once this gets going.”

Hopkins, who is also a visiting researcher at the Max Planck Institute, received funding from the National Science Foundation, the ARCS Foundation, and a Ralph J. & Carol M. Cicerone Graduate Fellowship. Additional support was provided by the U.S. Department of Energy, the U.S. Forest Service, Michigan Technological University and the Canadian Forest Service.

About the University of California, Irvine: Founded in 1965, UCI is a top-ranked university dedicated to research, scholarship and community service. Led by Chancellor Michael Drake since 2005, UCI is among the most dynamic campuses in the University of California system, with nearly 28,000 undergraduate and graduate students, 1,100 faculty and 9,000 staff. Orange County’s second-largest employer, UCI contributes an annual economic impact of $4 billion. For more UCI news, visit

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. Use of this line is available for a fee to radio news programs/stations that wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Janet Wilson | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>