Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant grass offers clues to growing corn in cooler climes

16.09.2008
A giant perennial grass used as a biofuels source has a much longer growing season than corn, and researchers think they’ve found the secret of its success. Their findings offer a promising avenue for developing cold-tolerant corn, an advance that would significantly boost per-acre yields.

The new study, from researchers at University of Illinois, appears this month in Plant Physiology Preview.

Miscanthus x giganteus is one of the most productive grasses known. It is able to capture the sun’s energy even as cool temperatures shut down photosynthesis in other plants. In Illinois, green Miscanthus leaves emerge up to six weeks before corn can be planted. Miscanthus thrives into October, while corn leaves wither in late August.

Corn and Miscanthus are C4 plants, which are more efficient than C3 plants in converting sunlight into leaves and stalks. (C3 and C4 simply refer to the number of carbon atoms in a molecule critical to photosynthesis.)

“The C4 process differs from C3 in having just four extra steps in its metabolism,” said Stephen Long, a professor of crop sciences and principal investigator on the study. “There are four extra proteins in this process, so we assumed that these proteins are related to low temperature tolerance.”

When they compared the levels of these proteins in plants grown in warm and cold conditions, the researchers noticed that one of the proteins, pyruvate phosphate dikinase (PPDK), was present at much higher levels in the Miscanthus leaves grown at cool temperatures than in the leaves of either corn or Miscanthus grown in warmer conditions.

Although photosynthesis declined in both plants when they were first subjected to cool temperatures, after two days, photosynthesis rebounded in the Miscanthus.

The increase corresponded to the upsurge in PPDK in its leaves.

“After seven days PPDK was 10 times the level it was in the warm conditions,” Long said.

In C4 plants, PPDK catalyzes a chemical reaction in the leaf critical to the cascade of reactions that convert carbon from carbon dioxide into starches that form the plant’s tissues.

Previous studies had shown that PPDK is generally not very stable in cold conditions. The protein is made up of four subunits, which tend to come apart at low temperatures, Long said.

To test how cold temperatures affect the protein when it is expressed in cells at high concentrations, post-doctoral fellow Dafu Wang cloned the PPDK gene into E. coli bacteria to produce large quantities of the protein.

“What he showed in the test tube was that if you concentrate the protein, then it becomes more resistant to cold,” Long said. “At higher concentration the protein creates its own microenvironment where in the cold it doesn’t come apart. This appears to be the secret of success for Miscanthus at low temperature: Expressing more of the protein allows it to photosynthesize at low temperature where corn can’t.”

The next step for the researchers is to develop a corn plant in which this gene is expressed at high levels to determine if that will make the corn more tolerant of low temperatures, Long said. Cold weather after emergence of corn in the spring or in late summer during grain-filling can limit photosynthesis, he said.

“This change should make corn more resistant to these cold weather events.”

The National Science Foundation supported this research. The research team is also affiliated with the Institute for Genomic Biology at Illinois and the USDA.

Editor’s note:
To reach Stephen Long, e-mail: stevel@life.uiuc.edu.
To reach co-author Stephen Moose, call: 217-244-6308;
email: smoose@illinois.edu

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Agricultural and Forestry Science:

nachricht Combination of Resistance Genes Offers Better Protection for Wheat against Powdery Mildew
22.01.2018 | Universität Zürich

nachricht New study shows producers where and how to grow cellulosic biofuel crops
17.01.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>