Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetics Not Enough to Increase Wheat Production

16.08.2010
The deep gene pool that has allowed wheat to achieve ever increasing gains in yield may be draining. Crop scientists estimate that 50% of the gain in wheat production over the past century has been due to breeding. According to a new study, however, that improvement has been slowing since the late 1980s, with little chance that future increases in yield can be met by breeding efforts alone.

The researchers, Robert A. Graybosch of USDA-ARS and C. James Peterson of Oregon State University, estimated that the average rate of genetic improvement in winter wheat yield potential since 1959 was 1.1% per year. However, most of this gain was realized from 1959-1989.

The study, reported in the September-October 2010 edition of Crop Science, published by the Crop Science Society of America, evaluated data collected from long-term USDA-ARS regional nursery trials in the Great Plains. The varieties entered into these trials from public and private entities represent the highest current genetic potential for grain yield production.

Since the late 1980s, the rate of grain yield improvement has slowed, and now appears to have reached a plateau. There are several reasons for this, including the perpetual evolutionary arms race against new pathogens, the resurgence of old pathogens, or perhaps merely the exhaustion of available genetic resources for yield improvement.

“We truly are in need of a second ‘Green Revolution’ in wheat,” says Graybosch, a wheat geneticist.

Fifty years ago, it was estimated that world population growth would out-strip world food supplies. These dire forecasts never reached fruition, as advances in genetic improvement via plant breeding and improved plant production practices have been able to keep pace with food demands.

Since inception of modern breeding efforts, improvements in wheat grain yield were driven by major breakthroughs, from adapting the plants to their climate, introducing disease resistance, and the introduction of dwarfing genes that caused plants to put more energy into growing seeds rather than stems. However, since these developments, no other major breeding advances have produced the “great leap forward” necessary to continue improving yields.

Unless some significant advance shortly impacts wheat genetic potential for grain yield, any increased demand for wheat can only be met by changes in current production practices or expansion of cultural environments.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at https://www.crops.org/publications/cs/abstracts/50/5/1882.

Crop Science is the flagship journal of the Crop Science Society of America. Original research is peer-reviewed and published in this highly cited journal. It also contains invited review and interpretation articles and perspectives that offer insight and commentary on recent advances in crop science. For more information, visit www.crops.org/publications/cs

The Crop Science Society of America (CSSA), founded in 1955, is an international scientific society comprised of 6,000+ members with its headquarters in Madison, WI. Members advance the discipline of crop science by acquiring and disseminating information about crop breeding and genetics; crop physiology; crop ecology, management, and quality; seed physiology, production, and technology; turfgrass science; forage and grazinglands; genomics, molecular genetics, and biotechnology; and biomedical and enhanced plants.

CSSA fosters the transfer of knowledge through an array of programs and services, including publications, meetings, career services, and science policy initiatives. For more information, visit www.crops.org

Sara Uttech | Newswise Science News
Further information:
http://www.sciencesocieties.org
http://www.crops.org

More articles from Agricultural and Forestry Science:

nachricht Raiding the rape field
23.05.2018 | Julius-Maximilians-Universität Würzburg

nachricht New technique reveals details of forest fire recovery
17.05.2018 | DOE/Brookhaven National Laboratory

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Building a brain, cell by cell: Researchers make a mini neuron network (of two)

23.05.2018 | Life Sciences

One-way roads for spin currents

23.05.2018 | Physics and Astronomy

A simple mechanism could have been decisive for the development of life

23.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>