Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetically modified corn affects its symbiotic relationship with non-target soil organisms

18.04.2012
Experimental evidence reveals a reduction in arbuscular mycorrhizal fungal colonization of Bt corn

An increasing number of crops commercially grown today are genetically modified (GM) to resist insect pests and/or tolerate herbicides. Although Bt corn is one of the most commonly grown GM crops in the United States, little is known about its effects on the long-term health of soils.

Although there are many benefits to using biotechnology in agriculture, such as potentially reducing insecticide use, there may be unintended side effects as well—does GM corn impact non-target soil organisms, such as arbuscular mycorrhizal fungi, or affect plants subsequently grown in the same field?

Bt corn is genetically engineered to express insecticidal toxins derived from a soil bacterium, Bacillus thuringiensis, to protect it against common agricultural pests such as the corn root worm and European corn borer. Tanya Cheeke and her colleagues (at Portland State University, Oregon) were interested in determining whether the cultivation of Bt corn has a negative effect on arbuscular mycorrhizal fungal colonization of Bt corn or of crops subsequently planted in the same soil. They published their findings in a recent issue of the American Journal of Botany (http://www.amjbot.org/content/99/4/700.full).

Arbuscular mycorrhizal fungi (AMF) are ubiquitous microscopic soil fungi that form symbiotic relationships with the roots of most plants. Plants supply the fungi with carbon, and the fungi increase the host plant's ability to uptake nutrients and water from the surrounding soil.

"Because these fungi rely on a plant host for nutrition and reproduction, they may be sensitive to genetic changes within a plant, such as insect-resistant Bt corn," stated Cheeke.

By experimentally planting seeds from several different lines of both Bt corn and non-Bt corn, and using local agricultural soil containing native mycorrhizal fungi, the authors were able to simulate what might happen naturally in an agricultural system.

"What makes our study unique is that we evaluated AMF colonization in 14 different lines of Bt and non-Bt corn under consistent experimental conditions in a greenhouse using locally collected agricultural field soil as the AMF inoculum," said Cheeke.

"The use of whole soil in this study allowed each Bt and non-Bt corn line to interact with a community of soil organisms, making this study more ecologically relevant than other greenhouse studies that use a single species of AMF," she adds.

Interestingly, the authors found that colonization of plant roots by symbiotic soil fungi was lower in the genetically modified Bt corn than in the control lines. However, there was no difference in root biomass or shoot biomass between the two types of corn at the time of harvest.

Cheeke and co-authors also determined that the Bt-protein itself is not directly toxic to the fungi since AMF colonization of vegetable soybeans did not differ for those grown in soil previously containing Bt vs. non-Bt corn.

Together these findings contribute to the growing body of knowledge examining the unanticipated effects of Bt crop cultivation on non-target soil organisms. Examining non-target effects of genetically engineered crops on symbiotic soil organisms becomes even more important as acreage devoted to the cultivation of Bt crops continues to increase globally.

"In 2011, 88% of the corn cultivated in the United States was genetically modified to express insect resistance, herbicide tolerance, or some combination of stacked traits," Cheeke commented. "Globally, genetically modified corn is cultivated in at least 16 different countries."

Cheeke notes that the next step is to understand the ecological significance of this study. "In greenhouse studies Bt corn had lower levels AMF colonization, so now it is important to see if this pattern is also observed under field conditions." She plans to use field experiments to test if planting a Bt crop for multiple years has an effect on the abundance or diversity of AMF in the soil ecosystem.

Tanya E. Cheeke, Todd N. Rosenstiel, and Mitchell B. Cruzan. 2012. Evidence of reduced arbuscular mycorrhizal fungal colonization in multiple lines of Bt maize. American Journal of Botany 99(4): 700-707. DOI: 10.3732/ajb.1100529

The full article in the link mentioned is available for no charge for 30 days following the date of this summary at http://www.amjbot.org/content/99/4/700.full. After this date, reporters may contact Richard Hund at ajb@botany.org for a copy of the article.

The Botanical Society of America (www.botany.org) is a non-profit membership society with a mission to promote botany, the field of basic science dealing with the study and inquiry into the form, function, development, diversity, reproduction, evolution, and uses of plants and their interactions within the biosphere. It has published the American Journal of Botany (www.amjbot.org) for nearly 100 years. In 2009, the Special Libraries Association named the American Journal of Botany one of the Top 10 Most Influential Journals of the Century in the field of Biology and Medicine.

For further information, please contact the AJB staff at ajb@botany.org.

Richard Hund | EurekAlert!
Further information:
http://www.botany.org

More articles from Agricultural and Forestry Science:

nachricht Microjet generator for highly viscous fluids
13.02.2018 | Tokyo University of Agriculture and Technology

nachricht Sweet route to greater yields
08.02.2018 | Rothamsted Research

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>