Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetically modified corn affects its symbiotic relationship with non-target soil organisms

18.04.2012
Experimental evidence reveals a reduction in arbuscular mycorrhizal fungal colonization of Bt corn

An increasing number of crops commercially grown today are genetically modified (GM) to resist insect pests and/or tolerate herbicides. Although Bt corn is one of the most commonly grown GM crops in the United States, little is known about its effects on the long-term health of soils.

Although there are many benefits to using biotechnology in agriculture, such as potentially reducing insecticide use, there may be unintended side effects as well—does GM corn impact non-target soil organisms, such as arbuscular mycorrhizal fungi, or affect plants subsequently grown in the same field?

Bt corn is genetically engineered to express insecticidal toxins derived from a soil bacterium, Bacillus thuringiensis, to protect it against common agricultural pests such as the corn root worm and European corn borer. Tanya Cheeke and her colleagues (at Portland State University, Oregon) were interested in determining whether the cultivation of Bt corn has a negative effect on arbuscular mycorrhizal fungal colonization of Bt corn or of crops subsequently planted in the same soil. They published their findings in a recent issue of the American Journal of Botany (http://www.amjbot.org/content/99/4/700.full).

Arbuscular mycorrhizal fungi (AMF) are ubiquitous microscopic soil fungi that form symbiotic relationships with the roots of most plants. Plants supply the fungi with carbon, and the fungi increase the host plant's ability to uptake nutrients and water from the surrounding soil.

"Because these fungi rely on a plant host for nutrition and reproduction, they may be sensitive to genetic changes within a plant, such as insect-resistant Bt corn," stated Cheeke.

By experimentally planting seeds from several different lines of both Bt corn and non-Bt corn, and using local agricultural soil containing native mycorrhizal fungi, the authors were able to simulate what might happen naturally in an agricultural system.

"What makes our study unique is that we evaluated AMF colonization in 14 different lines of Bt and non-Bt corn under consistent experimental conditions in a greenhouse using locally collected agricultural field soil as the AMF inoculum," said Cheeke.

"The use of whole soil in this study allowed each Bt and non-Bt corn line to interact with a community of soil organisms, making this study more ecologically relevant than other greenhouse studies that use a single species of AMF," she adds.

Interestingly, the authors found that colonization of plant roots by symbiotic soil fungi was lower in the genetically modified Bt corn than in the control lines. However, there was no difference in root biomass or shoot biomass between the two types of corn at the time of harvest.

Cheeke and co-authors also determined that the Bt-protein itself is not directly toxic to the fungi since AMF colonization of vegetable soybeans did not differ for those grown in soil previously containing Bt vs. non-Bt corn.

Together these findings contribute to the growing body of knowledge examining the unanticipated effects of Bt crop cultivation on non-target soil organisms. Examining non-target effects of genetically engineered crops on symbiotic soil organisms becomes even more important as acreage devoted to the cultivation of Bt crops continues to increase globally.

"In 2011, 88% of the corn cultivated in the United States was genetically modified to express insect resistance, herbicide tolerance, or some combination of stacked traits," Cheeke commented. "Globally, genetically modified corn is cultivated in at least 16 different countries."

Cheeke notes that the next step is to understand the ecological significance of this study. "In greenhouse studies Bt corn had lower levels AMF colonization, so now it is important to see if this pattern is also observed under field conditions." She plans to use field experiments to test if planting a Bt crop for multiple years has an effect on the abundance or diversity of AMF in the soil ecosystem.

Tanya E. Cheeke, Todd N. Rosenstiel, and Mitchell B. Cruzan. 2012. Evidence of reduced arbuscular mycorrhizal fungal colonization in multiple lines of Bt maize. American Journal of Botany 99(4): 700-707. DOI: 10.3732/ajb.1100529

The full article in the link mentioned is available for no charge for 30 days following the date of this summary at http://www.amjbot.org/content/99/4/700.full. After this date, reporters may contact Richard Hund at ajb@botany.org for a copy of the article.

The Botanical Society of America (www.botany.org) is a non-profit membership society with a mission to promote botany, the field of basic science dealing with the study and inquiry into the form, function, development, diversity, reproduction, evolution, and uses of plants and their interactions within the biosphere. It has published the American Journal of Botany (www.amjbot.org) for nearly 100 years. In 2009, the Special Libraries Association named the American Journal of Botany one of the Top 10 Most Influential Journals of the Century in the field of Biology and Medicine.

For further information, please contact the AJB staff at ajb@botany.org.

Richard Hund | EurekAlert!
Further information:
http://www.botany.org

More articles from Agricultural and Forestry Science:

nachricht Raiding the rape field
23.05.2018 | Julius-Maximilians-Universität Würzburg

nachricht New technique reveals details of forest fire recovery
17.05.2018 | DOE/Brookhaven National Laboratory

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>