Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Which genes cause deafness in dogs?

04.12.2013
TiHo researchers discover genes for congenital sensorineural deafness in Dalmatians.

More than 90 dog breeds can suffer from congenital sensorineural deafness. Dog breeds carrying certain gene variants for piebald spotting or the so-called merle factor which disturbs the synthesis of colour pigments and causes a brightening of the coat colour are particularly affected.


Of all of the breeds of dog, the inheritance of sensorineural deafness has thus far been most extensively investigated in Dalmatians.

Foto: majtas/Fotolia

Professor Ottmar Distl and Susanne Kluth from the Institute for Animal Breeding and Genetics of the University of Veterinary Medicine Hannover (TiHo) investigated the genetic causes for congenital sensorineural deafness in 235 Dalmatians. In order to do this, they screened more than 170.000 genetic variants distributed across the entire genome for sensorineural deafness. Their results provide the basis for a better understanding of the development of sensorineural deafness.

The researchers published them in the November issue of the online specialist magazine PLoS ONE (http://dx.plos.org/10.1371/journal.pone.0080642).

The genetic mechanisms which cause sensorineural deafness are very complex. Various gene variants are able to trigger the disease. “More than 90 percent of dogs with two or more gene variants for sensorineural deafness are affected by sensorineural deafness”, the researchers say. In their studies, the scientists found genes which affect the development of different structures in the inner ear. This includes the tectorial membrane, which is located within the cochlea, and the organ of Corti with its hair cells which convert acoustic signals into nerve signals and transmit them to the auditory nerve. Animals lacking the skin pigment cells known as melanocytes in their inner ears are also affected by sensorineural deafness.

Melanocytes have to migrate into the inner ear in order to complete important tasks for the formation of the acoustic hearing signal. Until now, this could only be verified in mouse models and a very rare natural mutation of white cattle.

The genetic knowledge now available provides the researchers of the University of Veterinary Medicine in Hannover with the basis to decipher the causes for congenital sensorineural deafness. Using the latest methods of genome analysis, they now start to compare the genome of dogs suffering from congenital sensorineural deafness with that of normally hearing dogs. The aim is to investigate congenital sensorineural deafness in as many dog and cat breeds as possible. “Only the knowledge of the genetic causes of the disease will help dog and cat breeders to prevent this inherited disease effectively and to organize their breeding programs appropriately, so our research is an important contribution to animal welfare”, says Distl. Scientists are currently developing a genome-wide test to detect sensorineural deafness. Dalmatian breeders can already ship EDTA blood samples (addition of EDTA prevents clotting of the blood) to the Institute for Animal Breeding and Genetics in Hannover, Germany (http://www.tiho-hannover.de/de/kliniken-institute/institute/institut-fuer-tierzu...). Breeders who want to support the development of tests for further dog and cat breeds can help by providing sample material (EDTA blood) and brainstem auditory evoked response (BAER) test results.

Of all of the breeds of dog, the inheritance of sensorineural deafness has thus far been most extensively investigated in Dalmatians. In the breeds Australian Cattle Dog, Boston Terrier, English Cocker Spaniel, English Setter, Jack Russell Terrier, Australian Shepherd and Border Collies, sensorineural deafness occurs more frequently when the animals are bred with stronger piebald spotting.

Original publication
Congenital sensorineural deafness in Dalmatian dogs associated with quantitative trait loci
Susanne Kluth, Ottmar Distl
PLOS ONE, DOI: 10.1371/journal.pone.0080642
Contact
Professor Dr. Ottmar Distl
University of Veterinary Medicine Hannover
Institute for Animal Breeding and Genetics
Tel.: +49 511 953-8875
ottmar.distl@tiho-hannover.de

Sonja von Brethorst | idw
Further information:
http://www.tiho-hannover.de

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>