Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene leads to longer shelf life for tomatoes, possibly other fruits

29.06.2010
A Purdue University researcher has found a sort of fountain of youth for tomatoes that extends their shelf life by about a week.

Avtar Handa, a professor of horticulture, found that adding a yeast gene increases production of a compound that slows aging and delays microbial decay in tomatoes. Handa said the results, published in the early online version of The Plant Journal, likely would transfer to most fruits.

"We can inhibit the aging of plants and extend the shelf life of fruits by an additional week for tomatoes," Handa said. "This is basic fundamental knowledge that can be applied to other fruits."

The organic compound spermidine is a polyamine and is found in all living cells. Polyamines' functions aren't yet fully understood. Handa and Autar Mattoo, a research plant physiologist with the U.S. Department of Agriculture's Agricultural Research Service and collaborator in the research, had shown earlier that polyamines such as spermidine and spermine enhance nutritional and processing quality of tomato fruits.

"At least a few hundred genes are influenced by polyamines, maybe more," Mattoo said. "We see that spermidine is important in reducing aging. It will be interesting to discover what other roles it can have."

Savithri Nambeesan, who was a graduate student in Handa's laboratory, introduced the yeast spermidine synthase gene, which led to increased production of spermidine in the tomatoes. Fully ripe tomatoes from those plants lasted about eight days longer before showing signs of shriveling compared with non-transgenic plants. Decay and rot symptoms associated with fungi were delayed by about three days.

"It increased the quality of the fruit," Handa said. "If a tomato goes to market, people won't buy it if it has started to shrivel. If we can stop that wrinkling, we can extend the market time of the fruit."

Mattoo said the finding could have implications for areas that don't often get fresh fruit.

"Shelf life is a major problem for any produce in the world, especially in countries such as in Southeast Asia and Africa that cannot afford controlled-environment storage," Mattoo said.

Handa said tomato growers and possibly other fruit growers could use the finding soon if they wanted through either transgenic plants or natural breeding methods.

"We can add this gene to the tomatoes or look at natural variation and select the cultivars that already have a high level of this gene's expression," Handa said.

Handa and Mattoo will continue to study polyamines to discover how they control biological functions in fruits.

The US-Israel Binational Agricultural Research and Development Fund, the USDA Initiative for Future Agricultural Food Systems, and the Purdue Research Foundation funded the research.

Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu
Sources: Avtar Handa, 765-494-1339, ahanda@purdue.edu
Autar Mattoo, 301-504-6622, autar.mattoo@ars.usda.gov
Ag Communications: (765) 494-2722;
Keith Robinson, robins89@purdue.edu

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>