Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene discovery may lead to new varieties of soybean plants

28.04.2010
Just months after the soybean genome was sequenced, a Purdue University scientist has discovered a long-sought gene that controls the plant's main stem growth and could lead to the creation of new types of soybean plants that will allow producers to incorporate desired characteristics into their local varieties.

Jianxin Ma (Jen-Shin Ma), an assistant professor of agronomy, used the research model plant Arabidopsis thaliana to discover the soybean gene that controls whether the plant's stem continues to grow after flowering. The find is a significant key to diversifying the types of soybeans growers can produce all over the world.

"The approach that we used in this study proves to be promising for rapid gene discovery and characterization in soybean," said Ma, whose findings were published Monday (April 26) in the Proceedings of the National Academy of Science. "With the genomic resources and information available, we spent only six months pinpointing and confirming the candidate gene - the time it takes to grow one generation of soybean."

Soybean plants generally fall into two categories: determinate plants whose main stem tips stop growing after flowering, and indeterminate plants that continue main stem growth after flowering. In the United States, indeterminate soybeans are grown in the northern states, while determinate are grown in the southern states, Ma said. A northern U.S. grower who may want the characteristics found only in a type of determinate soybean would not be able to successfully grow a determinant cultivar in the north.

Ma was able compare the gene known to control Arabidopsis thaliana's stem growth pattern with the soybean genome to identify four soybean candidate genes. Those genes were then sequenced in a sample of different families of soybeans, including Glycine soja, a wild type of soybean; Glycine max landraces, which were varieties developed through selection in Asia thousands of years ago; and elite cultivars, which are grown today in the United States.

A single base-pair nucleotide mutation in the gene Dt1 was found to be the reason some plants are determinate.

"Wild soybeans are all indeterminate. This mutation that makes them determinate was selected by ancient farmers a few thousand years ago," Ma said. "It seems determinate stem was a favorable characteristic for ancient farmers."

Ma tested the find by using an indeterminate soybean Dt1 gene to change an Arabidopsis thaliana plant from determinate to indeterminate.

Ma believes that ancient farmers selected determinate plants that stay relatively short because they are less likely to lodge, or bend at the stem.

"Their appearance probably resulted in an ancient 'green revolution' in soybean cultivation in the southern parts of ancient China," Ma said.

Ma collaborated with Lijuan Oiu at the Chinese Academy of Agricultural Sciences, Phil McClean at North Dakota State University, Randy Nelson at the University of Illinois and Jim Specht at the University of Nebraska.

Ma said he would next try to find a gene that makes soybeans semi-determinate. The National Science Foundation, Indiana Soybean Alliance and Purdue University funded his work.
Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu
Source: Jianxin Ma, 765-496-3662, maj@purdue.edu
Ag Communications: (765) 494-8415;
Steve Leer, sleer@purdue.edu

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

Further reports about: Academy Arabidopsis thaliana Purdue Science TV glycine soybean gene soybean plants

More articles from Agricultural and Forestry Science:

nachricht Raiding the rape field
23.05.2018 | Julius-Maximilians-Universität Würzburg

nachricht New technique reveals details of forest fire recovery
17.05.2018 | DOE/Brookhaven National Laboratory

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>