Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene developed through conventional breeding to improve cowpea aphid resistance

03.08.2009
The cowpea or black-eyed pea, as it is more commonly known, is a New Year's tradition for good luck. But disease and particularly aphids, which can wreck a crop within a few a days, are especially bad luck for the cowpea, according to scientists.

Several new lines of cowpeas with genes that are aphid-resistant and less susceptible to disease are currently being tested by researchers with Texas AgriLife and other Texas A&M System entities.

"The cowpea has been an important and popular food crop throughout the southern U.S.," said Dr. B.B. Singh, a visiting professor in the soil and crop sciences department at Texas A&M. "It's commonly known as the southern pea, field pea, crowder pea, black-eyed pea, purple-hull pea and pinkeye pea widely grown in the southern states."

The researchers' discoveries could yield big rewards. An international food crop, the cowpea was most popular in the southern U.S. from the 1930s through '70s, and East Texas remains a large U.S. cowpea-producing region.

And during times of drought, the cowpea can be a viable alternative forage crop for livestock producers, due to its ability to fix nitrogen, tolerate drought and provide high-quality fodder, Singh said. It is a high-quality forage for cattle producers, with a protein content as high as 28 percent in seeds and 17 percent to 20 percent in the fodder after harvesting the seeds.

However, the aphid is currently the biggest threat to cowpea producers, Singh said.

"(Aphids) like dry weather," explained Singh, who has spent his entire career studying the cowpea. "Immediately after infestation, they start sucking the juice (sap) from cowpea leaves, stem, flowers and pods of the plants reducing their growth and development and causing severe reduction in yield. They also spread viruses. Aphids can ruin a crop within a few days."

Singh, came to the department as a visiting professor following his retirement two years ago from the International Institute of Tropical Agriculture, considered the epicenter of cowpea research.

At Texas A&M, Singh is working with colleagues Dr. J. Creighton Miller, D.C. Sheuring and Dr. Bill Payne using field trials in College Station to find a solution to the aphid problem.

Singh has brought more than 35 lines of cowpeas with drought and aphid tolerance, as well as resistance to other diseases and higher yield potential, to College Station. His work there has involved using conventional breeding methods to cross those lines with six Texas and California varieties in greenhouse and field settings.

"Many of the IITA lines are resistant to aphid, bacterial blight, powdery mildew and drought, whereas most of the U.S. lines are susceptible," Singh said. "A number of crosses were made to transfer the resistance to aphids and drought from the IITA lines to the U.S. lines."

In mid July, an aphid infestation hit the College Station trials, putting the new varieties to the test.

"It's been fairly severe, permitting selection of resistant plants from the F2 and F3 populations," he said. "Due to drought and aphids this crop season, all of the susceptible cowpea varieties and segregating plants have been completely damaged, showing 80 percent to 100 percent yield loss, while the aphid resistant varieties and segregating plants are completely healthy with normal yield. The resistance is simply inherited, very effective and highly stable across environments."

From the segregating populations, the resistant plants with diverse maturity dates, plant type, growth habits and seed types have been selected to meet the need for grain type, fodder-type and pasture-type cowpea varieties, he said.

"These are being advanced to achieve uniformity and multi-location testing for stability of resistance and yield potential," Singh added. The new aphid-resistant, high-yielding varieties could be available to farmers as early as 2011, Singh said.

"The cowpea has worldwide importance as a crop for both human and animal nutrition," said Payne of Texas AgriLife Research, assistant director for research at the Norman Borlaug Institute for International Agriculture. "Introducing improved disease- and drought-resistant and higher-yield varieties could not only have tremendous potential for Texas and U.S. agriculture, it could help provide poor and developing countries with an important alternative source of nutrition."

According to the International Institute of Tropical Agriculture in Africa, the cowpea is an important food crop in many African, Asian and South American countries, especially as an alternative source of protein where people cannot afford meat and fish. The crop typically is grown by subsistence farmers with limited agricultural resources, who use it to feed livestock or sell for additional income.

The international Food and Agriculture Organization estimates more than 7.5 million tons of cowpeas are produced annually worldwide, with sub-Saharan Africa responsible for about 70 percent of that amount.

"We are already involved in international research projects in Africa relating to cowpeas," Payne noted. "It's exciting to think where these new activities in College Station and the research already under way in Africa may lead."

Blair Fannin | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>