Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene developed through conventional breeding to improve cowpea aphid resistance

03.08.2009
The cowpea or black-eyed pea, as it is more commonly known, is a New Year's tradition for good luck. But disease and particularly aphids, which can wreck a crop within a few a days, are especially bad luck for the cowpea, according to scientists.

Several new lines of cowpeas with genes that are aphid-resistant and less susceptible to disease are currently being tested by researchers with Texas AgriLife and other Texas A&M System entities.

"The cowpea has been an important and popular food crop throughout the southern U.S.," said Dr. B.B. Singh, a visiting professor in the soil and crop sciences department at Texas A&M. "It's commonly known as the southern pea, field pea, crowder pea, black-eyed pea, purple-hull pea and pinkeye pea widely grown in the southern states."

The researchers' discoveries could yield big rewards. An international food crop, the cowpea was most popular in the southern U.S. from the 1930s through '70s, and East Texas remains a large U.S. cowpea-producing region.

And during times of drought, the cowpea can be a viable alternative forage crop for livestock producers, due to its ability to fix nitrogen, tolerate drought and provide high-quality fodder, Singh said. It is a high-quality forage for cattle producers, with a protein content as high as 28 percent in seeds and 17 percent to 20 percent in the fodder after harvesting the seeds.

However, the aphid is currently the biggest threat to cowpea producers, Singh said.

"(Aphids) like dry weather," explained Singh, who has spent his entire career studying the cowpea. "Immediately after infestation, they start sucking the juice (sap) from cowpea leaves, stem, flowers and pods of the plants reducing their growth and development and causing severe reduction in yield. They also spread viruses. Aphids can ruin a crop within a few days."

Singh, came to the department as a visiting professor following his retirement two years ago from the International Institute of Tropical Agriculture, considered the epicenter of cowpea research.

At Texas A&M, Singh is working with colleagues Dr. J. Creighton Miller, D.C. Sheuring and Dr. Bill Payne using field trials in College Station to find a solution to the aphid problem.

Singh has brought more than 35 lines of cowpeas with drought and aphid tolerance, as well as resistance to other diseases and higher yield potential, to College Station. His work there has involved using conventional breeding methods to cross those lines with six Texas and California varieties in greenhouse and field settings.

"Many of the IITA lines are resistant to aphid, bacterial blight, powdery mildew and drought, whereas most of the U.S. lines are susceptible," Singh said. "A number of crosses were made to transfer the resistance to aphids and drought from the IITA lines to the U.S. lines."

In mid July, an aphid infestation hit the College Station trials, putting the new varieties to the test.

"It's been fairly severe, permitting selection of resistant plants from the F2 and F3 populations," he said. "Due to drought and aphids this crop season, all of the susceptible cowpea varieties and segregating plants have been completely damaged, showing 80 percent to 100 percent yield loss, while the aphid resistant varieties and segregating plants are completely healthy with normal yield. The resistance is simply inherited, very effective and highly stable across environments."

From the segregating populations, the resistant plants with diverse maturity dates, plant type, growth habits and seed types have been selected to meet the need for grain type, fodder-type and pasture-type cowpea varieties, he said.

"These are being advanced to achieve uniformity and multi-location testing for stability of resistance and yield potential," Singh added. The new aphid-resistant, high-yielding varieties could be available to farmers as early as 2011, Singh said.

"The cowpea has worldwide importance as a crop for both human and animal nutrition," said Payne of Texas AgriLife Research, assistant director for research at the Norman Borlaug Institute for International Agriculture. "Introducing improved disease- and drought-resistant and higher-yield varieties could not only have tremendous potential for Texas and U.S. agriculture, it could help provide poor and developing countries with an important alternative source of nutrition."

According to the International Institute of Tropical Agriculture in Africa, the cowpea is an important food crop in many African, Asian and South American countries, especially as an alternative source of protein where people cannot afford meat and fish. The crop typically is grown by subsistence farmers with limited agricultural resources, who use it to feed livestock or sell for additional income.

The international Food and Agriculture Organization estimates more than 7.5 million tons of cowpeas are produced annually worldwide, with sub-Saharan Africa responsible for about 70 percent of that amount.

"We are already involved in international research projects in Africa relating to cowpeas," Payne noted. "It's exciting to think where these new activities in College Station and the research already under way in Africa may lead."

Blair Fannin | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>