Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fungal Fumes Clear Out Crop Pests

22.02.2010
A cocktail of compounds emitted by the beneficial fungus Muscodor albus may offer a biologically based way to fumigate certain crops and rid them of destructive pests. That’s the indication from Agricultural Research Service (ARS) studies in which scientists pitted Muscodor against potato tuber moths, apple codling moths and Tilletia fungi that cause bunt diseases in wheat.

The scientists--at ARS laboratories in Aberdeen, Idaho; Wapato, Wash., and other locations--conducted separate studies of Muscodor. However, their goal was the same: to learn whether volatile organic compounds (VOCs) released by the fungus could replace or diminish the use of synthetic pesticides.

In field trials conducted since 2007, ARS plant pathologist Blair Goates found that treating wheat seed or the soil with a formulation of Muscodor and ground rye completely prevented common bunt under moderate disease conditions. Caused by the fungus T. tritici, common bunt reduces wheat yields and grain quality. Although chemical fungicide seed treatments have kept common bunt outbreaks to a minimum, alternative controls are worth exploring if the chemicals lose effectiveness or are discontinued, notes Goates, with the ARS Small Grains and Potato Germplasm Research Unit in Aberdeen. Results from this study were published in the Canadian Journal of Microbiology.

At the ARS Yakima Agricultural Research Laboratory in Wapato, entomologist Lerry Lacey and colleagues tested Muscodor against potato tuber moths, which damage potato leaves and tubers, and apple codling moths, which feed inside apples. In fumigation chamber tests, 85 to 91 percent of adult codling moths died when exposed to Muscodor fumes, while 62 to 71 percent of larvae died or failed to pupate. In apple storage tests, a 14-day exposure to Muscodor killed 100 percent of cocooned codling moth larvae, which are especially difficult to control.

Lacey and colleagues have also been testing Muscodor’s effectiveness in biofumigating sealed cartons of apples stored at various temperatures. The results have been encouraging so far, he reports, and there appears to be no adverse effect on the apples’ color, firmness or other characteristics.

Read more about this research in the February 2010 issue of Agricultural Research magazine, available online at: http://www.ars.usda.gov/is/AR/archive/feb10/pests0210.htm.

ARS is the principal intramural scientific research agency of the U.S. Department of Agriculture (USDA). The research supports the USDA priority of promoting international food security.

USDA is an equal opportunity provider, employer and lender. To file a complaint of discrimination, write: USDA, Director, Office of Civil Rights, 1400 Independence Ave., S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice), or (202) 720-6382 (TDD).

Jan Suszkiw | Newswise Science News
Further information:
http://www.usda.gov

More articles from Agricultural and Forestry Science:

nachricht Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli
26.04.2017 | University of the Basque Country

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>