Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fries with a side of acrylamide

03.12.2015

Researchers working to cut unwanted chemical in French fries

French fry lovers, beware! You may be exposed to a chemical more commonly associated with heavy industry than crispy fried potatoes. Fortunately, researchers are finding ways to reduce that exposure.


Fries with relatively high acrylamide and poor consumer attributes (right) vs. fries with low acrylamide and desirable consumer attributes (left).

Credit: NFPT/SCRI Acrylamide project

French fries contain acrylamide. The chemical poses a risk for several types of cancer in rodents. However, the evidence from human studies is still incomplete. The International Agency for Research on Cancer considers the chemical a "probable human carcinogen."

Scientists first began paying attention to the unwanted chemical's presence in food more than a decade ago. Trace amounts of acrylamide are present in many foods cooked at temperatures higher than 248 degrees Fahrenheit. Relatively high levels are found in fried potatoes, including French fries and potato chips.

With that in mind, a group of scientists set out in 2011 to identify potato varieties that form less acrylamide.

Led by University of Idaho researcher Yi Wang, the group assessed more than 140 potato varieties. The researchers' goal was to identify potatoes that make great French fries and form less acrylamide. The amount of the chemical found in fried potatoes is thought to be directly linked to the chemistry of the raw potatoes.

Raw potatoes contain an amino acid called asparagine. The amino acid is found in many animal and plant food sources, and it's a known precursor of acrylamide. When cooked at high temperatures, sugars react with amino acids, including asparagine, in a chemical process known as the Maillard reaction. The reaction is what gives fried potatoes their prized flavor and color, but it is also what produces acrylamide.

Researchers planted 149 potato breeds in five potato-growing regions across the United States. Upon harvesting, they sent some of the raw potatoes to labs. There, the potatoes were stored in conditions similar to commercial potatoes. After storage, the labs tested the potatoes for their levels of reducing sugars and asparagine. Researchers then fried some of the potatoes and observed how much acrylamide the potatoes formed.

The researchers found that it is fairly achievable to identify potato breeds that produce less acrylamide, especially when compared with the industry standard potato breeds, Ranger Russet and Russet Burbank.

"The real challenge is to find the varieties that not only have those characteristics, but also yield finished products with desirable processing quality that meet the stringent standards of the food industry," Wang said.

Two of the most promising varieties -- Payette Russet and Easton -- have already been released for commercial use.

Wang said the group hopes to identify genes that are related to lower acrylamide in certain fried potatoes. The study shows a strong relationship between the genetics of a raw potato and its potential to form acrylamide. If researchers are able to identify the specific genes, they may be able to eliminate them in the future.

The team's research is published in Crop Science.

Susan Fisk | EurekAlert!

Further reports about: Agronomy French fries acid acrylamide amino amino acid asparagine potato potato varieties

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>