Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Freeze-dry Method Good for Processing Fish

02.08.2011
A quicker freeze-dry technique used to process salmon cubes could potentially be applied to add value to meat components considered to be less appealing, according to a U.S. Department of Agriculture (USDA) researcher.

The new freeze-dry method, which requires less energy and processing time, was developed by scientists at the University of Alaska-Fairbanks (UAF) in collaboration with Peter Bechtel, a food technologist at the Agricultural Research Service (ARS) Subarctic Agricultural Research Unit (SARU) in Kodiak, Alaska. ARS is USDA's principal intramural scientific research agency.

One of the goals of the study was to set up a process that would produce freeze-dried cubes with less than 10 percent moisture, according to Chuck Crapo, seafood technology specialist with the UAF Marine Advisory Program. This was achieved by manipulating temperature and time.

Scientists created a process that took only nine hours by raising the temperature from minus 40 degrees Fahrenheit to 32 degrees Fahrenheit. Traditional processing can take 20 hours or more.

The new method removed 97 percent of the moisture from fillets of Alaska's most abundantly harvested Pacific salmon species—pink, sockeye and chum. The freeze-dried salmon cubes maintained their original color, rehydrated quickly and shrank less in a shorter period of time than food processed by traditional freeze-drying.

Such products could offer healthful alternatives for less desirable portions of fish muscle, according to Bechtel. For example, when the salmon gets too close to spawning season, its muscle quality declines. Edible portions of the meat, which are then considered byproducts, could be freeze-dried.

Cubes made from salmon are rich in omega-3 fatty acids and could eventually offer a healthful option for people who want to increase seafood in their diets as recommended by the new Dietary Guidelines for Americans. Salmon cubes could be used to make tasty snacks, salad toppings and ready-to-eat soups.

Findings from this research were published in the Journal of Food Science in 2010.

Read more about this research in the August 2011 issue of Agricultural Research magazine.

Sandra Avant | EurekAlert!
Further information:
http://www.ars.usda.gov
http://www.ars.usda.gov/is/pr/2011/110801.htm

More articles from Agricultural and Forestry Science:

nachricht Microjet generator for highly viscous fluids
13.02.2018 | Tokyo University of Agriculture and Technology

nachricht Sweet route to greater yields
08.02.2018 | Rothamsted Research

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>