Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Seeing the forest and the trees

A new technique for panoramic, very-high-resolution, time-lapse photography for plant and ecosystem research

Ever wonder what plants do when you're not around? How about an entire forest or grassland? Not even the most dedicated plant researcher can be continuously present to track environmental effects on plant behavior, and so numerous tools have been developed to measure and quantify these effects.

Frames from a GigaPan time-lapse sequence showing vegetation changes induced by summer monsoon season precipitation. The three images, which demonstrate the level of image detail capture allowed by the GigaPan system, show the response of a cholla cactus to precipitation over a 22-day period.

Credit: Image courtesy of Nichols et al.

Time-lapse photography has been used to study many aspects of plant behavior, but typically only a few plants can be captured with a single camera at the desired level of detail. This limitation has, for the most part, confined such observations to the laboratory.

Recently, however, researchers have maximized both the scale and resolution of time-lapse photography with the use of a novel robotic camera mount and software—enabling the detailed visualization of plant movements across a wide panoramic view. This system greatly improves the utility of time-lapse photography by capturing interactions between the environment and a plant population in a single sequence. The new technique is demonstrated in the September issue of Applications in Plant Sciences (available for free viewing at

"The beauty of time-lapse is that we can make observations in the plant's time scale. Changes in the habitat can be correlated with changes in the plant itself," notes coauthor Janet Steven.

Developed by Randy Sargent and colleagues at the Robotics Institute, Carnegie Mellon University, the GigaPan EPIC Pro is a robotic camera system that makes it possible to create time-lapse sequences of panoramas that also allow the viewer to zoom in at an incredible level of detail, e.g., from a landscape view to that of an individual plant. Environmental responses can be seen across a large population with the additional advantage of examining individual responses within the same population using one time-lapse sequence.

In the current study, Mary Nichols (of the U.S. Department of Agriculture–Agricultural Research Service) and colleagues demonstrated the technique in both indoor and outdoor settings. Using a robotic mount, high-resolution images were captured across a panorama and stitched together with software developed by Sargent and colleagues (available through The researchers chose to use a practical and affordable camera (the Canon G10) to demonstrate the feasibility of the technique to a variety of users.

The indoor setup created a panorama three photos high by seven photos wide of a time-lapse sequence of a quick-growing variety of Brassica rapa plants. This panorama of 21 photos was captured at 15-minute intervals for 21 days. Changes among the plants can be seen as they respond to cabbage white butterfly caterpillars and stinkbugs introduced during the experiment. The helical movements, or circumnutation, of the plants is also evident.

The outdoor setup was powered by solar panels and photographed an Arizona grassland in a panorama four photos high by seven photos wide. These 28 pictures were taken every two hours for nearly one month. The rapid greening response of the grassland to rainfall is easily seen as well as the response of an individual cholla cactus as its branches become erect due to the rainfall.

The study describes the new technique in detail and provides a materials listing, costs, and example sources for components to build the solar-powered outdoor system.

As Steven emphasizes, "The technique has amazing potential to study the importance of the environment on plant phenology and behavior." Depending on the researcher's needs, the time-lapse sequence can be scaled from hours (e.g., flash floods) to years (e.g., post-fire recovery). Researchers can further adapt the technique by adjusting the overall resolution, which can be increased by capturing a larger number of individual images at a higher zoom.

Time-lapse photography has advanced the analysis of landscape change, phenological responses, and plant movement. Current research using the GigaPan system is investigating processes including plant response to grazing and precipitation patterns. This new technique will be a powerful tool to allow researchers to simultaneously examine environmental influence over time across a population as well as at a high-resolution on a single plant, and to do so with a minimum of manpower. Additionally, it will be useful in a number of other disciplines, including geology, archaeology, biodiversity, glaciology, and rangeland ecosystem research.

Applications in Plant Sciences (APPS) is a monthly, peer-reviewed, open access journal focusing on new tools, technologies, and protocols in all areas of the plant sciences. It is published by the Botanical Society of America, a nonprofit membership society with a mission to promote botany, the field of basic science dealing with the study and inquiry into the form, function, development, diversity, reproduction, evolution, and uses of plants and their interactions within the biosphere. The first issue of APPS published in January 2013; APPS is available as part of BioOne's Open Access collection.

For further information, please contact the APPS staff at

Beth Parada | EurekAlert!
Further information:

Further reports about: GigaPan Plant Sciences flash flood plant movement solar panel

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>