Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forest epidemic is unprecedented phenomenon, still getting worse

06.04.2010
The Swiss needle cast epidemic in Douglas-fir forests of the coastal Pacific Northwest is continuing to intensify, appears to be unprecedented over at least the past 100 years, and is probably linked to the extensive planting of Douglas-fir along the coast and a warmer climate, new research concludes.

Scientists in the College of Forestry at Oregon State University have also found that this disease, which is affecting hundreds of thousands of acres in Oregon and Washington and costing tens of millions of dollars a year in lost growth, can affect older trees as well as young stands – in some cases causing their growth to almost grind to a halt.

The newest findings were just published in Forest Ecology and Management, a professional journal.

Swiss needle cast is a native fungal disease specific to Douglas-fir that was first described in Europe. It rarely kills trees but causes discoloration, loss of needles and growth reduction, and is common in the Pacific Northwest wherever Douglas-fir grows. However, it caused significant problems only in recent decades along the coast.

Starting in 1984, an epidemic began to develop, and it significantly worsened after 1996.

“It’s now clear that this epidemic is a new phenomenon, with far more severity and impact than anything we’ve observed from Swiss needle cast in the past,” said Dave Shaw, an assistant professor at OSU and director of a cooperative designed to fight this disease. “We’ve known of this disease for decades but it was considered a non-issue in terms of forest health. A perfect storm of conditions that favor this fungus has caused a major epidemic that is still growing.”

The disease has now been identified at varying levels of severity in western Oregon on more than 300,000 acres in each of the past four years, peaking at 376,000 acres in 2008. Prior to this four-year period, it had affected as much as 300,000 acres only once in the 14-year history of aerial detection surveys, researchers say.

Depending on the multiple factors that influence it, it’s possible it could ultimately have an impact on up to two million acres of forests near the Oregon coast, and change the face of forestry in a huge region.

The new study concluded that warmer conditions, especially from March through August, are associated with significantly reduced growth in diseased trees, which may reflect earlier fruiting of the fungus. Wet, drizzly conditions in May through July are also important. The warm, wet conditions within 20 miles or so of the Pacific Ocean make those areas a hotspot of disease in coastal Oregon and Washington.

“We now know that weather is a driver in the epidemiology and spread of this disease,” said Bryan Black, an assistant professor of forestry based at OSU’s Hatfield Marine Science Center. “We can’t say yet whether climate change is part of what’s causing these problems, but warmer conditions, milder winters and earlier springs would be consistent with that.”

Another key suspect, scientists say, is the planting for decades of a monoculture of Douglas-fir in replacement of coastal forests, which previously had trees of varying ages and different species. Since Douglas-fir was a small component of these forests, it appears the disease was relatively insignificant. Even-aged stands of vulnerable Douglas-fir allow the fungus to build up to much higher levels, releasing spores that can literally spread with the wind. Reductions in growth of 20-30 percent are fairly common, and sometimes higher.

It used to be thought that the disease primarily affected only younger trees, mostly less than 40 years old and predominately the 10-30 year age group, the researchers say. This study, based on examinations of rings in naturally-regenerated trees more than 80 years old, for the first time showed that they are very susceptible as well. The findings erase any hope that older trees will “outgrow” the susceptibility to this disease, the scientists concluded.

“Tree growth has been reduced so much at severely-impacted sites that we could not actually find a growth ring that went all the way around some trees,” Black said. “At these sites the overall growth rate over the past 25 years was reduced by more than 85 percent in comparison to non-diseased trees.”

The impact of Swiss needle cast is highly uneven, difficult to predict, and often dependent on microclimate, terrain and availability of soil nitrogen. Fungicides can control it, but cost too much to be practical and raise environmental concerns. However, OSU is developing tools to better anticipate the problems it may cause and allow forest managers to consider alternative management strategies. Planting of less Douglas-fir is one option, using more western hemlock, red alder or other species.

In some places, nature has already begun this approach.

“We’ve seen sites where western hemlock is overtopping Douglas-fir that has almost stopped growing, and may ultimately replace it,” Shaw said. “Some stands are already converting to alternative species on their own.”

Work is under way to develop fungal-tolerant Douglas-fir families that may be of some value, especially in areas with low or moderate levels of the disease. Those studies will not be complete for several years.

If the epidemic continues to spread and begins to change growth and productivity of Douglas-fir, the researchers said, its impacts may go beyond forest health and timber production. It could affect the efficacy of managing lands for other purposes, such as wildlife protection.

“These tree ring data corroborate that the impacts of Swiss needle cast continue to worsen in the western Oregon Coast Range,” the researchers wrote in their conclusion. “They also corroborate that Swiss needle cast is associated with climate, especially long-term warming trends during the late winter and early spring.”

About the OSU College of Forestry: For a century, the College of Forestry has been a world class center of teaching, learning and research. It offers graduate and undergraduate degree programs in sustaining ecosystems, managing forests and manufacturing wood products; conducts basic and applied research on the nature and use of forests; and operates 14,000 acres of college forests.

The journal publication this story is based on is available online: http://bit.ly/cCsYRs

Dave Shaw | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Agricultural and Forestry Science:

nachricht New insight into why Pierce's disease is so deadly to grapevines
11.06.2018 | University of California - Davis

nachricht Where are Europe’s last primary forests?
29.05.2018 | Humboldt-Universität zu Berlin

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>