Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forest diversity from Canada to the sub-tropics influenced by family proximity

18.05.2012
Discovery could impact how conservation, management decisions are made

How species diversity is maintained is a fundamental question in biology. In a new study, a team of Indiana University biologists has shown for the first time that diversity is influenced on a spatial scale of unparalleled scope, in part, by how well tree seedlings survive under their own parents.


Data from over 3 million trees in the eastern half of the US were aggregated into two-degree-latitude-by-longitude cells in order to study regional patterns of conspecific negative density dependence, a process where the mortality of a species rises in coincidence with its increasing abundance. Credit: Indiana University

Scientists have long considered conspecific negative density dependence (CNDD), a process where the mortality of a species rises in coincidence with its increasing abundance, to be a key mechanism maintaining diversity at the local scale. In new research to be published Friday in the journal Science, the IU researchers show that this mechanism is driving diversity from the boreal forests to sub-tropical forests.

The report, "Conspecific negative density dependence and forest diversity," is authored by Daniel Johnson, a doctoral student in the IU Bloomington College of Arts and Sciences' Department of Biology. Co-authors are Wesley T. Beaulieu, also a doctoral student in the Department of Biology, and biology professors James D. Bever and Keith Clay, Johnson's major advisor.

Their work analyzed data on forest composition from over 200,000 plots containing more than 1.3 million trees and from paired plots containing over 1.7 million seedlings of 151 different tree species. The plots were located from the Canadian border south to Florida and from the Atlantic coast to the 100th meridian and covered over 1.5 million square miles. The U.S. Forest Service spends about $62 million each year to gather the publicly available forest inventory data used in the IU study.

"We are now able to provide robust evidence that CNDD is pervasive in forest communities from boreal to sub-tropical regions and that it can significantly affect the relative abundance and richness of species with and between forests," Johnson said. "And we now see that the ability to which one tree species can sustain itself in the same area has profound impacts on the diversity of species at a spatial scale that has not been attainable previously. This is the first time it's been shown to be happening not just at a local spatial scale but over the entire eastern US."

The concept of CNDD is based on the well-known Janzen-Connell hypothesis, which proposes that the close proximity of adults reduces seedling survival of that species through increased attack by host-specific pests and pathogens.

Studies of CNDD in the past have mostly focused on forest communities at single sites or of a single species, with the most recent work showing that in tree species, composition and abundance can be influenced by CNDD at the scale of individual trees.

"Local interactions have previously been considered to affect species diversity at a local scale, but our findings indicate that local interactions feed back to species richness and abundance over much larger geographical scale, spanning most of eastern North America," Johnson said.

Evidence that local interactions underlie regional species richness is in contrast to the current understanding that patterns of forest diversity are primarily driven by temperature, precipitation and other physical aspects of the environment. This discovery has implications for how forest modeling is conducted and conservation and management decisions are made.

For more information or to speak with Johnson or other co-authors, please contact Steve Chaplin, IU Communications, at 812-856-1896 or stjchap@iu.edu. Tweeting IU science news: @IndianaScience

Steve Chaplin | EurekAlert!
Further information:
http://www.iu.edu

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>