Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Foot and mouth disease may spread through shedding skin cells

11.05.2011
Skin cells shed from livestock infected with foot and mouth disease could very well spread the disease.

In a new paper appearing in the Proceedings of the Royal Society B, Lawrence Livermore National Laboratory scientist Michael Dillon proposed that virus-infected skin cells could be a source of infectious foot and mouth disease virus aerosols. His proposal is based on the facts that foot and mouth disease virus is found in skin and that airborne skin cells are known to transmit other diseases.

The proposal could lead to new methods for surveillance for foot and mouth disease (as in settled dust), the development of more effective control measures, and improved studies of the persistence of the disease in the environment. The research also may be applicable to how other infectious diseases are spread.

Foot and mouth is a highly contagious viral disease capable of causing widespread epidemics in livestock. The foot and mouth disease virus (FMDV) has multiple known routes of transmission. These include direct contact (animal-to-animal contact at mucous membranes, cuts or abrasions), indirect contact (such as contaminated bedding), ingestion (contaminated feed) and the respiratory or airborne pathway (inhalation of infectious aerosols).

"The airborne pathway may play a role in some outbreaks by causing disease 'sparks' (disease spread to regions remote from a primary infection site)," Dillon said. "If the disease isn't detected quickly, these 'sparks' can lead to major outbreaks."

Dillon cited the widespread dissemination of FMDV during the catastrophic 2001 United Kingdom outbreak, which is thought to be caused by the inadvertent transport of animals with unrecognized FMDV infection from a Prestwick area farm to areas previously free of FMDV.

Mammals actively shed skin cells into the environment. Skin cells comprise a significant fraction (1 percent to 10 percent) of measured indoor and outdoor aerosols and indoor dust. These cells; and the bacteria, yeast, fungi and viruses known to be present on the surface of (or in some cases inside) skin cells; can become airborne by being shed directly into the air or when dust is disturbed.

"Infectious material can become airborne on skin cells and cause infection when inhaled or deposited directly onto the skin of the new host," Dillon said. "This is believed to be a significant source of bacterial infection for surgical procedures and other infections that are a result of treatment in a hospital."

"While not a typical site for the initial FMDV infection, the skin is a major viral replication site in most animals," Dillon said. "The outermost layer of FMDV-infected skin needs to be analyzed to find out how stable the virus is in these skin cells."

Dillon's proposal suggests a number of practical possibilities for FMDV surveillance and control:

The sampling and management of settled dust could prove to be a useful tool for disease surveillance and control.

Slaughtered animals may emit airborne FMDV via infected skin cells simply by exposure to wind and/or mechanical abrasion (e.g. moving animal carcasses, spraying hides with water).

Airborne emissions from cattle and sheep may need to be revisited as infected skin cells trapped in hair may later become airborne (currently these animals are believed to contribute little to aerosol emissions relative to swine).

"Given the potential for skin cells to protect infectious virus from the environment, the management of other viral diseases may also benefit from enhanced dust surveillance and management, and skin decontamination," Dillon said.

The paper is available on the Web.

More Information
Lab develops new tool to detect foot-and-mouth-like diseases, Newsline, Feb. 22, 2008.

Protecting our nation's livestock, Science & Technology Review, May 2006.

Characterizing virulent pathogens, Science & Technology Review, November 2007.

Assessing the threat of biological terrorism, Science & Technology Review, September 2007.

Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>