Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Florida’s Climate Boosts Soil-Carbon Storage, Cuts Greenhouse Emissions

30.09.2014

Warm temperatures and a wet landscape increase soil’s ability to store carbon, which in turn helps mitigate greenhouse gas emissions, according to a new University of Florida study covering 45 years of data.

Soil-stored carbon can slow the build-up of carbon-based gases in the atmosphere, a phenomenon believed to be a cause of global climate change. So it’s vital to preserve soil carbon, said Sabine Grunwald, a UF soil and water science professor who led the research.

“The conservation of the ‘black gold’ below our feet, which is not only a natural part of Florida’s soils but also helps to improve our climate and agricultural production, is a hidden treasure,” said Grunwald, a member of the Institute of Food and Agricultural Sciences faculty. “Soils serve as a natural container to hold carbon that would otherwise be emitted into the atmosphere as greenhouse gases that accelerate global climate change.”

In addition to environmental stewardship, landowners can make money by storing carbon. Participants in the state’s Florida Stewardship Program are sitting on an estimated $300 million worth of carbon.

Because it’s so wet, Florida’s soil has historically stored more carbon than any state, except perhaps Alaska, which has not been studied extensively, Grunwald said.

With Florida’s rapid population growth in the past 45 years, from 5 million to about 18 million, land use has changed considerably. More urban areas have sprung up, while agricultural, rangeland and forests have declined, Grunwald said. That change has caused carbon-rich wetlands to increase 140 percent, while carbon-poor agricultural land decreased about 20 percent, according to the study.

In the first study of its kind, UF researchers reviewed data from 1,251 soil samples collected across Florida from 1965 to 1996. They also collected 1,080 new soil samples statewide in 2010. They studied carbon sequestration rates from 1965 to 2010.

Researchers studied land use, land cover and climate change to see how those factors affect the soil’s ability to store carbon. Organic carbon in soil includes dead plant and animal tissue and makes up most global soil carbon.

Land cover is what’s on the Earth’s surface, whether it’s dirt, pavement, water or trees, among other things. Land use means how people utilize public and private land, such as agriculture, forestry or conservation land.

Together, land use, land cover and climate change account for 46 percent of soil carbon sequestration, the study showed. Of that, land use and land cover account for 27 percent, while climate change account for 19 percent.

Researchers used temperature and rain to determine the effect of climate change. They found higher average annual temperatures correlated with higher soil carbon sequestration, specifically in crops, mesic upland forest, pineland and land converted from pine forests to urban use. Areas with higher average annual precipitation showed less sequestration in agricultural crops and pine forests.

Among land-use types, researchers also found sugarcane in the soils of the Everglades Agricultural area near Lake Okeechobee and wetlands stored the most soil carbon while crop, citrus and relatively dry upland forest sequestered the least.

Results of the study appear in the September issue of the journal Science of the Total Environment

By Brad Buck, 352-294-3303, bradbuck@ufl.edu
Source: Sabine Grunwald, 352-294-3145, sabgru@ufl.edu

Brad Buck | newswise

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>