Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Floragenex and Thünen Institute announce collaboration on African and Asian tree genomics

03.05.2013
Floragenex and the German Thünen Institute have announced a collaboration to better understand the genomes of trees in Africa and Asia.

Under the agreement, Floragenex will use Restriction site Associated DNA (RAD) sequencing technology in conjunction with the Illumina HiSeq 2000 platform to identify natural genetic variation in five distinct species of trees distributed in a geographic range across Africa and Central Asia.


Thünen Institute and Floragenex will cooperate to identify natural genetic variation in tropical tree species (© Ilja Hendel)

Genomic DNA for selected Iroko, Sapeli, Ayous, Sibirian larch, and Mongolian oak trees will be provided by the Thünen Centre of Competence on Timber Origin and sent to Floragenex laboratories for RAD library processing, sequencing and bioinformatics analysis of genomic data. The so generated genomic information will be used by the Thünen Institute to develop gene markers to identify species and to control the geographic origin of timber. The gene markers will be applied by Thünen as re-enforcement tools to control the timber trade and to reduce illegal logging.

“We are pleased to continue our long-running relationship with the Thünen Institute and advance genomics efforts in these important and understudied tree species” said Floragenex President Rick Nipper. “Floragenex’s commitment to work in ecological and conservation genomics is a key mission of our business and we look forward to providing the Thünen Institute with substantial genomic resources for both future basic and applied research.”

“It is a great opportunity to work together with Floragenex”, said the Director of the Thünen-Institute of Forest Genetics, Bernd Degen. “The genomic data produced by the RAD approach of Floragenex will offer a massive amount of gene markers for our timber tracking projects”.
About Floragenex
Oregon-based Floragenex is a privately owned biotechnology company providing innovative solutions for genomic analysis in human, plant and animal systems. Since 2007, Floragenex has delivered impact results in hundreds of genomics studies focused on answering fundamental questions in genetics, ecology, evolutionary biology and biomedical research. With multiple offices located on the US Pacific coast, Floragenex technologies permit investigation of genomes at unprecedented levels for academic, governmental and commercial researchers worldwide.
About the Thünen Institute
The German Thünen Institute conducts interdisciplinary research targeted at the sustainable development of agricultural, forestry and wood production as well as fisheries. The work encompasses economic, ecological and technological aspects. As a federal research centre consisting of 15 specialised institutes, it develops scientific basics as decision-making for the German government.
Within the Thünen Institute, the Thünen Centre of Competence on the Origin of Timber is the central contact facility for government agencies, timber trade, consumers and associations to verify the species of wood and/or wood products and its origin in Germany. The Centre combines the analytical expertise and competence of the four Thünen institutes of Wood Research, Forest Genetics, World Forestry and Forest Economics responsible for wood identification, proof of origin, certification and timber trade structures.

For more information contact:

Dr. Bernd Degen
Head of the Thünen Institute of Forest Genetics
bernd.degen@ti.bund.de
Dr. Rick Nipper
President, Floragenex
rick@floragenex.com

Dr. Michael Welling | Thünen-Institut
Further information:
http://www.ti.bund.de

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>