Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flight of the bumble (and honey) bee

24.03.2009
Bees prefer shortest distance between two flowers

Insects such as honeybees and bumble bees are predictable in the way they move among flowers, typically moving directly from one flower to an adjacent cluster of flowers in the same row of plants.

The bees' flight paths have a direct affect on their ability to hunt for pollen and generate "gene flow", fertilization and seed production that results when pollen moves from one plant to another. The study of gene flow has experienced more attention in part due to the recent introduction of genetically modified organisms (GMOs) into the environment.

Scientists, plant breeders, and growers seek to understand flight patterns of honeybees, bumble bees, and other insect "pollinators" as a way to increase production and healthy produce. Although several studies have focused on pollen movement among cucurbits, the plant family that includes cucumbers, gourds, melons, or pumpkins, little research has looked at pollinator flight patterns and, until recently, none has determined pollen flow in watermelon plantings.

New research published in the February 2009 issue of HortScience by research scientists S. Alan Walters of Southern Illinois University and Jonathan R. Schultheis of North Carolina State University studied pollinator movements down and across rows in watermelon [Citrullus lanatus (Thunb.)] by tracking pollen flow. The direction of honeybees was tracked under field conditions during 2001 and 2002 at the Southern Illinois University Horticultural Research Center in Carbondale.

According to Walters, the study indicated that the evaluation of pollen flow showed a definite pattern of bee movement and gene migration in watermelon. "Although we detected pollinator movement that was strongly directional in both directions (east and west) down the row from the central block of donor plants, results also indicate that significant movement also occurred across rows in both directions (north and south) from the donor plot", he remarked.

Because watermelon vines grow in multiple directions, including across rows, bees can easily move across rows if the next closest flower is in that direction instead of down the row. Most pollen is deposited on the nearest neighboring flower from where pollen was collected.

Walters summarized the study stating, "Although significant amounts of linear pollinator movements occur down rows of watermelon plants, pollinator movements (in watermelon) are not as simple as just maintaining a linear direction straight down the row, but are related to the short flight distances that most likely occur to the closest neighboring flower from the one that was previously visited."

The complete study and abstract are available on the ASHS HortScience electronic journal web site: http://hortsci.ashspublications.org/cgi/content/abstract/44/1/49

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application.

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org
http://hortsci.ashspublications.org/cgi/content/abstract/44/1/49

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Information integration and artificial intelligence for better diagnosis and therapy decisions

24.05.2017 | Information Technology

CRTD receives 1.56 Mill. Euro BMBF-funding for retinal disease research

24.05.2017 | Awards Funding

Devils Hole: Ancient Traces of Climate History

24.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>