Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


First report of a new crop virus in North America


The switchgrass exhibited mosaic symptoms--splotchy, discolored leaves--characteristic of a viral infection, yet tested negative for known infections. Deep sequencing, a new technology, revealed the plants were infected with a new virus in the genus mastrevirus, the first of its kind found in North America.

University of Illinois scientists reported in Archives of Virology evidence of the new mastrevirus, tentatively named switchgrass mosaic-associated virus 1 (SgMaV-1). Other members of the mastrevirus genus, a group of DNA viruses, are known to be responsible for decimating yields in staple food crops (including corn, wheat and sugarcane) throughout Africa, Europe, Asia and Australia. It has never been reported in North America.

This is Bright Agindotan, Research Assistant Professor at Montana State University, former postdoctoral researcher at the Energy Biosciences Institute.

Photo by Kathryn Coulter

Many mastreviruses are transmitted from plant to plant by leafhoppers. The rate of infection rises with leafhopper populations, which can cause widespread epidemics and complete yield loss in some crops. Researchers are not sure what vector transmits SgMaV-1 and the impacts of the virus on switchgrass biomass yield, nor do they know what other crops the new virus affects.

"My fear is that this virus is in corn and wheat, and we are not even aware of it," said first author Bright Agindotan, a former postdoctoral researcher at the Energy Biosciences Institute, housed within the Carl R. Woese Institute for Genomic Biology. "It's like when you are sick and go to the hospital, but the doctors say nothing is wrong with you because they only test for what they know."

To be considered the same species in the mastrevirus genus, two viruses must share a minimum of 75 percent of the same genome. Agindotan and his team found two virus isolates that shared 88 percent of the same genome, but just 56-57 percent of any other known mastrevirus. These two isolates are strains of SgMaV-1.

Researchers tested 17 switchgrass varieties that had mosaic symptoms at the EBI Energy Farm. They detected the new virus in all but one variety, called Shenandoah. Switchgrass is a perennial crop, so these infected plants will continue to grow and accumulate the virus year after year, serving as a reservoir for the virus.

"We don't know the impact of this virus on the biomass yield of the energy crops," said Agindotan, who is currently a research assistant professor at Montana State University. "We don't know if this virus will affect cereal crops. We don't know the specific leafhoppers that transmit it, assuming it is transmitted by leafhoppers like other members of the mastrevirus genus."

The mosaic symptoms may have been caused by SgMaV-1, another type of virus infecting the plant, or some combination of the two. In future studies, virus-free plants will need to be infected with SgMaV-1 to see which species are vulnerable and what symptoms emerge. Additional research will determine infectivity, host range, pathogenicity, epidemiology, and vector transmission of SgMaV-1.

"The world is like a global village," Agindotan said. "Plants are imported into United States legally (and illegally) after being certified free of a list of restricted pests. The list is based on known pests. So, it is possible to import plants infected with unknown pests. The origin of the new virus is unknown, but it is most closely related to members of the mastrevirus genus found in Australia.

"You can only test for what you know. Using a technology that detects both known and unknown pathogens is a good tool for food safety


Associate Professor of Crop Sciences Carl Bradley, also a member of the IGB, and Assistant Professor of Crop Sciences Leslie Domier contributed to this work. The paper, "Detection and characterization of the first North American mastrevirus in switchgrass," is available online (DOI 10.1007/s00705-015-2367-5).

This research was supported by the Energy Biosciences Institute, a public-private collaboration where bioscience and biological techniques are applied to help solve the global energy challenge. The partnership, funded by energy company BP, includes researchers from the University of California, Berkeley; the University of Illinois at Urbana-Champaign; the Lawrence Berkeley National Laboratory; and BP.

Nicholas Vasi | EurekAlert!

Further reports about: Biology Energy Urbana-Champaign biomass crop leafhoppers pests symptoms viruses

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

Indian roadside refuse fires produce toxic rainbow

26.10.2016 | Health and Medicine

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

More VideoLinks >>>