Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding ways to feed pigs for less

08.06.2012
Results of a preliminary experiment conducted at the University of Illinois indicate that it may be possible to select pigs that can make efficient use of energy in less expensive feed ingredients, thus reducing diet costs.

Less expensive feed is usually higher in fiber than the corn-soy diets typically used in U.S. swine production, explained Hans H. Stein, professor of animal sciences at the University of Illinois at Urbana-Champaign.

However, the white breeds that are used in commercial pork production use only about 40 percent of the insoluble fiber. "If you can increase that number to 50 or 60 or 70 percent, then of course, you would get a much better use of the energy in those ingredients," Stein explained.

"The white breeds have been selected for high efficiency and rapid gain for many, many generations," Stein continued. "But that's all based on corn-soy diets. However, there are also indigenous breeds of pigs that have not been selected for commercial production, and these breeds have, therefore, not been fed the corn-soybean meal diets for as many generations as the white breeds."

Among those indigenous breeds are Meishan pigs, which have been raised in China for many centuries. Stein's hypothesis was that these pigs, which have not been selected for efficiency and rapid weight gain, would use fiber more efficiently than the white breeds.

Stein and his team compared the fiber digestion of Meishan pigs with that of two groups of Yorkshire pigs. They tested four diets that used high-fiber ingredients: distillers dried grains with solubles (DDGS), soybean hulls, sugar beet pulp, and pectin. When fed DDGS, the values for apparent total tract energy digestibility were higher for the Meishan pigs (83.5%) than for either weight-matched (77.3%) or age-matched (78.8%) Yorkshire pigs. Researchers observed no significant difference in energy digestibility for the other ingredients.

"What we observed was that, particularly for the DDGS diets, the Meishans were quite a bit more effective at using that fiber," Stein said. "That diet is high in insoluble dietary fiber. When we looked at more soluble fibers, there was no difference."

Although Meishan pigs would never be used for commercial pork production in the United States, the results indicate that differences exist among breeds of pigs. Thus, it is possible that differences also exist among the white breeds and that some may use fibers more efficiently than others.

Stein stressed that this study was preliminary and said that determining if white breeds can be bred to use insoluble fiber more efficiently will be quite costly because it requires selecting pigs for multiple generations. Stein said that he and colleagues at the University of Illinois' Institute for Genomic Biology are pursuing funding for further research.

"I think it is exciting that there are some pigs that can use fiber better than we have thought in the past, and I think this will open up opportunities to think in different ways about how we can feed pigs economically," he said.

The study was published in a recent issue of the Journal of Animal Science and was co-authored with former graduate student Pedro Urriola.

News writer: Susan Jongeneel
phone: (217) 333-3291; email: sjongene@illinois.edu

Susan Jongeneel | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Agricultural and Forestry Science:

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

nachricht Unusual soybean coloration sheds a light on gene silencing
20.06.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>