Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Finding ways to feed pigs for less

Results of a preliminary experiment conducted at the University of Illinois indicate that it may be possible to select pigs that can make efficient use of energy in less expensive feed ingredients, thus reducing diet costs.

Less expensive feed is usually higher in fiber than the corn-soy diets typically used in U.S. swine production, explained Hans H. Stein, professor of animal sciences at the University of Illinois at Urbana-Champaign.

However, the white breeds that are used in commercial pork production use only about 40 percent of the insoluble fiber. "If you can increase that number to 50 or 60 or 70 percent, then of course, you would get a much better use of the energy in those ingredients," Stein explained.

"The white breeds have been selected for high efficiency and rapid gain for many, many generations," Stein continued. "But that's all based on corn-soy diets. However, there are also indigenous breeds of pigs that have not been selected for commercial production, and these breeds have, therefore, not been fed the corn-soybean meal diets for as many generations as the white breeds."

Among those indigenous breeds are Meishan pigs, which have been raised in China for many centuries. Stein's hypothesis was that these pigs, which have not been selected for efficiency and rapid weight gain, would use fiber more efficiently than the white breeds.

Stein and his team compared the fiber digestion of Meishan pigs with that of two groups of Yorkshire pigs. They tested four diets that used high-fiber ingredients: distillers dried grains with solubles (DDGS), soybean hulls, sugar beet pulp, and pectin. When fed DDGS, the values for apparent total tract energy digestibility were higher for the Meishan pigs (83.5%) than for either weight-matched (77.3%) or age-matched (78.8%) Yorkshire pigs. Researchers observed no significant difference in energy digestibility for the other ingredients.

"What we observed was that, particularly for the DDGS diets, the Meishans were quite a bit more effective at using that fiber," Stein said. "That diet is high in insoluble dietary fiber. When we looked at more soluble fibers, there was no difference."

Although Meishan pigs would never be used for commercial pork production in the United States, the results indicate that differences exist among breeds of pigs. Thus, it is possible that differences also exist among the white breeds and that some may use fibers more efficiently than others.

Stein stressed that this study was preliminary and said that determining if white breeds can be bred to use insoluble fiber more efficiently will be quite costly because it requires selecting pigs for multiple generations. Stein said that he and colleagues at the University of Illinois' Institute for Genomic Biology are pursuing funding for further research.

"I think it is exciting that there are some pigs that can use fiber better than we have thought in the past, and I think this will open up opportunities to think in different ways about how we can feed pigs economically," he said.

The study was published in a recent issue of the Journal of Animal Science and was co-authored with former graduate student Pedro Urriola.

News writer: Susan Jongeneel
phone: (217) 333-3291; email:

Susan Jongeneel | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>