Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fertilization intensifies competition for light and endangers plant diversity

04.05.2009
When grasslands are fertilized their productivity is increased but their plant diversity is diminished.

In the last 50 years levels of plant-available nitrogen and phosphorous have doubled worldwide. This additional supply of plant nutrients is predicted to be one of the three most important causes of biodiversity loss this century.

The research, under the leadership of Professor Andy Hector from the University of Zurich, shows for the first time the exact mechanisms that lead to the loss of biodiversity from grasslands following fertilization.

Competition Following the 'Winner-takes-all' Principle

Different plant species profit from nutrient addition to different degrees with some species growing much faster than before. Consequently, some understory species are overgrown by their faster growing neighbours, shaded and without access to sufficient sunlight eventually die out. With the help Pascal Niklaus from the ETH Zurich, researchers from the University of Zurich established an ingenious experiment where they added artifical light to the understory of fertilized grasslands. This additional light countered the negative effects of fertilization and prevented the loss of plant diversity. Counter to earlier beliefs, competition for soil nutrients had no influence on changes in grassland diversity.

«This study is the first direct experimental proof that competition for light is the main mechanism of plant biodiversity loss after fertilization» says Yann Hautier summarizing the results of his PhD work. «The addition of nutrients causes competition for the vital sunlight to follow a 'winner-takes-all' principle.»

Consequences for Management of Grasslands

Competition for light following eutrophication is one of the main causes of the loss of plant diversity. The results of the work from Hector's research group have implications for sustainable management of grasslands and for the development of conservation policy. «Our research shows that it is necessary to control nutrient enrichment if plant diversity is to be conserved in the long term» concludes Andy Hector.

Literature:

Yann Hautier, Pascal A. Niklaus, Andrew Hector: Competition for Light Causes Plant Biodiversity Loss Following Eutrophication, in: Science (Volume 324, Issue 5927)

Contact:

Prof. Andrew Hector
Institute of Environmental Sciences
University of Zurich
phone +41 44 635 48 04
E-Mail: ahector@uwinst.uzh.ch
Yann Hautier
Institute of Environmental Sciences
University of Zurich
phone +41 44 635 61 04
E-Mail: yhautier@uwinst.uzh.ch

Prof. Andrew Hector | EurekAlert!
Further information:
http://www.uzh.ch

More articles from Agricultural and Forestry Science:

nachricht New insight into why Pierce's disease is so deadly to grapevines
11.06.2018 | University of California - Davis

nachricht Where are Europe’s last primary forests?
29.05.2018 | Humboldt-Universität zu Berlin

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>