Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fertility or Powdery Mildew Resistance?

12.11.2010
Powdery mildew is a fungus that infects both crop and ornamental plants. Each year, powdery mildew and other plant pathogens cause immense crop loss.

Despite decades of intense research, little is known of the plant molecules that allow fungal hyphae to invade the host’s epidermal cells.

A European research group lead by Ueli Grossniklaus, a plant geneticist at the University of Zurich, now published a study in Science shedding a new light on mildew susceptibility in plants and its surprising link to reproduction.

Investigating mildew susceptibility in plants is not really a main research focus for Ueli Grossniklaus, a professor for plant genetics at the University of Zurich, Switzerland. Grossniklaus’ lab mainly investigates the molecular mechanism of both sexual and asexual plant reproduction. His group conducts fundamental research on the model plant Arabidopsis thaliana, whose complete genome has been deciphered.

Recently, Grossniklaus and his team uncovered a mutant that they named nortia after an Etruscan goddess of fertility. Together with FERONIA – a gene Grossniklaus’ group had previously discovered – NORTIA plays a key role in the communication between the female and male cells during fertilization. Surprisingly, examination of the structure of the NORTIA gene revealed that it was very similar to the structure the Mlo gene of barley. In barley, Mlo is responsible for powdery mildew susceptibility, with mlo mutants showing a resistance against many strains of powdery mildew infection. This mutation is the only known permanent resistance against powdery mildew infection and it is widely used in barley breeding. Plants with such inherent resistance are of great importance, as they reduce crop loss due to powdery mildew infection without the use of fungicides. Up until now, little was known about the molecular components that allow the fungus to penetrate the epidermal cells of leafs of other plants.

Pollination and fungal infections are based on similar communication mechanisms

In flowering plants, fertilization occurs after the male pollen tube penetrates the female sexual apparatus, a process controlled by NORTIA and FERONIA. Until the mid 19th century, pollen tubes were considered fungus-like pathogens, before their role in fertilization was discovered. This is because, similar to pollen tubes, pathogenic fungal hyphae penetrate the plant’s tissue via tip growth. So the scientists further investigated the connection between the tip growing pollen tubes and tip growing fungus hyphae.

”NORTIA is only expressed in sexual apparatus of the plant. So there is no way for NORTIA to be responsible for powdery mildew susceptibility,” Grossniklaus explained. Therefore, the researchers focused on the role of feronia, the second mutant important for pollen tube reception. Contrary to NORTIA, FERONIA is expressed in throughout the plant, including the leaf epidermis. In collaboration Ralph Panstruga’s group at the Max Planck Institute for Plant Breeding Research in Cologne, Germany, the scientists could demonstrate that Arabidopsis with the wild-type FERONIA gene was susceptible to powdery mildew infection. Plants with an inactivated feronia gene, however, were resistant against powdery mildew. But the plant pays an enormous price for such resistance: the plant is infertile. Both identification processes – of either tip growing pollen tubes or invading fungal hyphae – seem to use the same or very similar molecules. As Grossniklaus stresses: ”This explains why plants could not get rid of the gene causing powdery mildew susceptibility during the course of evolution.”

Among researchers working on powdery mildew, these results have caused enormous interest worldwide as the signal pathway of powdery mildew infection is still poorly understood. Facing a constantly growing population, it is important to be able to breed crops beside barley with a permanent resistance against powdery mildew. The close linkage of powdery mildew susceptibility and fertility show how difficult it will be to achieve this goal.

Literature: Sharon A. Kessler, Hiroko Shimosato-Asano, Nana Friderike Keinath, Samuel Elias Wuest, Gwyneth Ingram, Ralph Panstruga and Ueli Grossniklaus, Conserved molecular components for pollen tube reception and fungal invasion, in: Science, 12. November 2010, Vol. 330. no. 6006, pp. 968 – 971, DOI: 10.1126/science.1195211

Contact:
Prof. Ueli Grossniklaus
Institute of Plant Biology University of Zurich
Tel. +41 44 634 82 40
E-Mail: grossnik@botinst.uzh.ch

Beat Müller | idw
Further information:
http://www.uzh.ch/

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>