Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fertility or Powdery Mildew Resistance?

12.11.2010
Powdery mildew is a fungus that infects both crop and ornamental plants. Each year, powdery mildew and other plant pathogens cause immense crop loss.

Despite decades of intense research, little is known of the plant molecules that allow fungal hyphae to invade the host’s epidermal cells.

A European research group lead by Ueli Grossniklaus, a plant geneticist at the University of Zurich, now published a study in Science shedding a new light on mildew susceptibility in plants and its surprising link to reproduction.

Investigating mildew susceptibility in plants is not really a main research focus for Ueli Grossniklaus, a professor for plant genetics at the University of Zurich, Switzerland. Grossniklaus’ lab mainly investigates the molecular mechanism of both sexual and asexual plant reproduction. His group conducts fundamental research on the model plant Arabidopsis thaliana, whose complete genome has been deciphered.

Recently, Grossniklaus and his team uncovered a mutant that they named nortia after an Etruscan goddess of fertility. Together with FERONIA – a gene Grossniklaus’ group had previously discovered – NORTIA plays a key role in the communication between the female and male cells during fertilization. Surprisingly, examination of the structure of the NORTIA gene revealed that it was very similar to the structure the Mlo gene of barley. In barley, Mlo is responsible for powdery mildew susceptibility, with mlo mutants showing a resistance against many strains of powdery mildew infection. This mutation is the only known permanent resistance against powdery mildew infection and it is widely used in barley breeding. Plants with such inherent resistance are of great importance, as they reduce crop loss due to powdery mildew infection without the use of fungicides. Up until now, little was known about the molecular components that allow the fungus to penetrate the epidermal cells of leafs of other plants.

Pollination and fungal infections are based on similar communication mechanisms

In flowering plants, fertilization occurs after the male pollen tube penetrates the female sexual apparatus, a process controlled by NORTIA and FERONIA. Until the mid 19th century, pollen tubes were considered fungus-like pathogens, before their role in fertilization was discovered. This is because, similar to pollen tubes, pathogenic fungal hyphae penetrate the plant’s tissue via tip growth. So the scientists further investigated the connection between the tip growing pollen tubes and tip growing fungus hyphae.

”NORTIA is only expressed in sexual apparatus of the plant. So there is no way for NORTIA to be responsible for powdery mildew susceptibility,” Grossniklaus explained. Therefore, the researchers focused on the role of feronia, the second mutant important for pollen tube reception. Contrary to NORTIA, FERONIA is expressed in throughout the plant, including the leaf epidermis. In collaboration Ralph Panstruga’s group at the Max Planck Institute for Plant Breeding Research in Cologne, Germany, the scientists could demonstrate that Arabidopsis with the wild-type FERONIA gene was susceptible to powdery mildew infection. Plants with an inactivated feronia gene, however, were resistant against powdery mildew. But the plant pays an enormous price for such resistance: the plant is infertile. Both identification processes – of either tip growing pollen tubes or invading fungal hyphae – seem to use the same or very similar molecules. As Grossniklaus stresses: ”This explains why plants could not get rid of the gene causing powdery mildew susceptibility during the course of evolution.”

Among researchers working on powdery mildew, these results have caused enormous interest worldwide as the signal pathway of powdery mildew infection is still poorly understood. Facing a constantly growing population, it is important to be able to breed crops beside barley with a permanent resistance against powdery mildew. The close linkage of powdery mildew susceptibility and fertility show how difficult it will be to achieve this goal.

Literature: Sharon A. Kessler, Hiroko Shimosato-Asano, Nana Friderike Keinath, Samuel Elias Wuest, Gwyneth Ingram, Ralph Panstruga and Ueli Grossniklaus, Conserved molecular components for pollen tube reception and fungal invasion, in: Science, 12. November 2010, Vol. 330. no. 6006, pp. 968 – 971, DOI: 10.1126/science.1195211

Contact:
Prof. Ueli Grossniklaus
Institute of Plant Biology University of Zurich
Tel. +41 44 634 82 40
E-Mail: grossnik@botinst.uzh.ch

Beat Müller | idw
Further information:
http://www.uzh.ch/

More articles from Agricultural and Forestry Science:

nachricht Microjet generator for highly viscous fluids
13.02.2018 | Tokyo University of Agriculture and Technology

nachricht Sweet route to greater yields
08.02.2018 | Rothamsted Research

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>