Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fertility needs in high-yielding corn production

19.04.2013
Although advances in agronomy, breeding, and biotechnology have dramatically increased corn grain yields, soil test values indicate that producers may not be supplying optimal nutrient levels. Moreover, many current nutrient recommendations, developed decades ago using outdated agronomic management practices and lower-yielding, non-transgenic hybrids, may need adjusting.

Researchers with the University of Illinois Crop Physiology Laboratory have been re-evaluating nutrient uptake and partitioning in modern corn hybrids.

"Current fertilization practices may not match the uptake capabilities of hybrids that contain transgenic insect protection and that are grown at planting densities that increase by about 400 plants per acre per year," said U of I Ph.D. student Ross Bender. "Nutrient recommendations may not be calibrated to modern, higher-yielding genetics and management."

The study examined six hybrids, each with transgenic insect protection, at two Illinois locations, DeKalb and Urbana. Researchers sampled plant tissues at six incrementally spaced growth stages. They separated them into their different fractions (leaves, stems, cobs, grain) to determine season-long nutrient accumulation, utilization, and movement.

Although maximum uptake rates were found to be nutrient-specific, they generally occurred during late vegetative growth. This was also the period of greatest dry matter production, an approximate 10-day interval from V10 to V14. Relative to total uptake, however, uptake of phosphorus (P), sulfur (S), and zinc (Zn) was greater during grain fill than during vegetative growth. The study also showed that the key periods for micronutrient uptake were narrower than those for macronutrients.

"The implications of the data are numerous," said Matias Ruffo, a co-author of the paper and worldwide agronomy manager at The Mosaic Company. "It is necessary that producers understand the timing and duration of nutrient accumulation. Synchronizing fertilizer applications with periods of maximum nutrient uptake is critical to achieving the best fertilizer use efficiency."

Jason Haegele, another co-author of the paper and post-doctoral research associate at the U of I added, "Although macro- and micronutrients are both essential for plant growth and development, two major aspects of plant nutrition are important to better determine which nutrients require the greatest attention: the amount of a nutrient needed for production, or total uptake, and the amount of that nutrient that accumulates in the grain."

Study results indicated that high amounts of nitrogen (N), potassium (K), P, and S are needed, with applications made during key growth stages to maximize crop growth. Moreover, adequately accounting for nutrients with high harvest index values the proportion of total nutrient uptake present in corn grain), such as N, P, S, and Zn, which are removed from production fields via the grain, is vital to maintaining long-term soil productivity.

In Illinois, it is common to apply all the P in a corn-soybean rotation prior to the corn production year.

"Although farmers in Illinois fertilize, on average, approximately 93 pounds of P2O5 per acre for corn, the estimated 80 percent of soybean fields receiving no additional phosphorus would have only 13 pounds per acre remaining for the following year's soybean production," said Fred Below, professor of crop physiology. "Not only is this inadequate for even minimal soybean yield goals, but these data suggest a looming soil fertility crisis if fertilizer usage rates are not adjusted as productivity increases."

Integration of new findings will allow producers to match plant nutritional needs with the right nutrient source and right rate applied at the right time and right place. The same team of scientists is collaborating on a follow-up study investigating the seasonal patterns of nutrient accumulation and utilization in soybean production.

"Although nutrient management is a complex process, a greater understanding of the physiology of nutrient accumulation and utilization is critical to maximize the inherent yield potential of corn," concluded Bender.

"Nutrient uptake, partitioning, and remobilization in modern, transgenic insect-protected maize hybrids" by Ross R. Bender, Jason W. Haegele, Matias L. Ruffo and Fred E. Below was published in the January 2013 edition of Agronomy Journal (105:161-170). It is an open-access article available at: https://www.agronomy.org/publications/aj/articles/105/1/161. An abbreviated version of this article, entitled "Modern corn hybrids' nutrient uptake patterns," was published in Better Crops with Plant Food (available at: http://www.ipni.net/publication/bettercrops).

Susan Jongeneel | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>