Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ferns took to the trees and thrived

06.07.2009
As flowering plants like giant trees quickly rose to dominate plant communities during the Cretaceous period, the ferns that had preceded them hardly saw it as a disappointment.

In fact, they flourished. While modern tropical rain forests were becoming established, ferns climbed aboard, and experienced a flowering of their own species diversity.

"The canopy is there and -- boom -- diversification," said Duke University researcher Eric Schuettpelz, who is completing a post-doctoral fellowship in biology with associate professor Kathleen Pryer.

By integrating genomic data from 400 living fern species with information from the fossil record, Schuettpelz and Pryer constructed a new time-calibrated family tree for ferns. Their study appears on the cover of the July 7 Proceedings of the National Academy of Sciences.

Though ancient, it appears that ferns really came into their own during a very hot, very wet period that peaked about 10 million years after the Cretaceous/Tertiary boundary 65 million years ago.

Two key innovations may have led to the ferns' success in the face of the new competition from flowering plants, Schuettpelz said. Some ferns developed the ability to make a living on light that was more toward the red end of spectrum -- shade, in other words. And, around this time, some ferns also developed the ability to live on trees, sometimes without soil, as epiphytes.

By storing water, developing thicker skin, or being more tolerant to drying out, the epiphytic ferns could now perch on a trunk, limb, or twig and live quite happily more than 100 feet off the forest floor, where moisture, temperature, and sunlight are very different indeed.

Whereas the fossil record seemed to suggest that ferns experienced three distinct pulses of species diversification, the Duke team's analysis shows that there was a fourth, roughly corresponding with the development of epiphytism.

So, as rain forests developed and tropical trees and vines clawed past each other to reach heavenward, they took the ferns up along with them. Thousands of new fern species evolved to take advantage of all the new niches being created in the canopy.

"In some ways I guess, the epiphytes escaped the battle on the ground," Schuettpelz said.

Today, epiphytes comprise about 30 percent of the more than 9,000 living fern species. But this isn't the only plant group that includes epiphytes. This fall, as a post-doctoral fellow at the National Evolutionary Synthesis Center (NESCent), Schuettpelz will begin to look for parallel patterns of diversification in epiphytic flowering plants like bromeliads and orchids.

Pryer and Schuettpelz received support from the National Science Foundation.

Karl Leif Bates | EurekAlert!
Further information:
http://www.duke.edu

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>