Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ferns took to the trees and thrived

06.07.2009
As flowering plants like giant trees quickly rose to dominate plant communities during the Cretaceous period, the ferns that had preceded them hardly saw it as a disappointment.

In fact, they flourished. While modern tropical rain forests were becoming established, ferns climbed aboard, and experienced a flowering of their own species diversity.

"The canopy is there and -- boom -- diversification," said Duke University researcher Eric Schuettpelz, who is completing a post-doctoral fellowship in biology with associate professor Kathleen Pryer.

By integrating genomic data from 400 living fern species with information from the fossil record, Schuettpelz and Pryer constructed a new time-calibrated family tree for ferns. Their study appears on the cover of the July 7 Proceedings of the National Academy of Sciences.

Though ancient, it appears that ferns really came into their own during a very hot, very wet period that peaked about 10 million years after the Cretaceous/Tertiary boundary 65 million years ago.

Two key innovations may have led to the ferns' success in the face of the new competition from flowering plants, Schuettpelz said. Some ferns developed the ability to make a living on light that was more toward the red end of spectrum -- shade, in other words. And, around this time, some ferns also developed the ability to live on trees, sometimes without soil, as epiphytes.

By storing water, developing thicker skin, or being more tolerant to drying out, the epiphytic ferns could now perch on a trunk, limb, or twig and live quite happily more than 100 feet off the forest floor, where moisture, temperature, and sunlight are very different indeed.

Whereas the fossil record seemed to suggest that ferns experienced three distinct pulses of species diversification, the Duke team's analysis shows that there was a fourth, roughly corresponding with the development of epiphytism.

So, as rain forests developed and tropical trees and vines clawed past each other to reach heavenward, they took the ferns up along with them. Thousands of new fern species evolved to take advantage of all the new niches being created in the canopy.

"In some ways I guess, the epiphytes escaped the battle on the ground," Schuettpelz said.

Today, epiphytes comprise about 30 percent of the more than 9,000 living fern species. But this isn't the only plant group that includes epiphytes. This fall, as a post-doctoral fellow at the National Evolutionary Synthesis Center (NESCent), Schuettpelz will begin to look for parallel patterns of diversification in epiphytic flowering plants like bromeliads and orchids.

Pryer and Schuettpelz received support from the National Science Foundation.

Karl Leif Bates | EurekAlert!
Further information:
http://www.duke.edu

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>