Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Farms of the Future: Bio-Oil, Biochar from Biomass

25.07.2011
Rural landscapes of the future might have pyrolysis plants instead of grain elevators on every horizon —processing centers where farmers would bring bulky crops such as switchgrass to be made into crude oil.

Those pyrolysis plants would pass that crude “bio-oil” on to refineries elsewhere to be made into drop-in fuels and industrial chemicals; they would capture and use for their own energy needs a byproduct called syngas made up of hydrogen, carbon monoxide and perhaps carbon dioxide; and they would send farmers away with an important byproduct called biochar that could go back on the land to help rebuild damaged soils, sequester carbon and alter greenhouse gas emissions.

Sound futuristic? It’s also a current research focus at South Dakota State University.

A major new study by South Dakota State University researchers working with a U.S. Department of Agriculture colleague explores how to get the most from such a production system. The USDA is funding the project with a grant of $1 million — $200,000 annually for the next five years — to help scientists design a feedstock production system for optimum energy production of “bio-oil,” and also to explore the possible ecological benefits from the use of biochar.

The grant was selected by the USDA’s National Institute of Food and Agriculture’s flagship competitive grants program called AFRI, or the Agriculture and Food Research Initiative. It was selected in the sustainable bioenergy challenge area. Typically fewer than 10 percent of proposals are funded, with awards based on external peer reviews of a proposal’s scientific merit.

“We’re looking at this from a whole system approach, and we’re looking at various components in this whole system,” said SDSU professor Tom Schumacher, the project director. “Historically, the distributive nature of crop production gave rise to a network of grain elevators to separate and coordinate the flow of grain to the processing industry. A network of rail lines added new infrastructure to improve efficiency. For lignocellulosic feedstocks, a corollary to the grain elevator would be a collection point that would be within 10 to 30 miles of production fields.”

Those collection points wouldn’t be for long-term storage, but to receive, sort and pre-process or process feedstocks using pyrolysis to break them down into bio-oil, syngas and biochar. Making crude bio-oil would have the effect of densifying the material to a liquid form that is easier to transport for further processing. Meanwhile, the biochar would likely be used in fields in the service area of the pyrolysis plant.

Pyrolysis is a process that uses elevated temperatures in the absence of oxygen to break down organic materials. The SDSU study will more specifically use a technique called microwave pyrolysis that heats the feedstock by exciting the individual molecules, making it very accurate and easy to control.

Schumacher’s co-principal investigators on the project include professors Sharon Clay, David Clay, Ronald Gelderman and Douglas Malo and research associate Rajesh Chintala, all of SDSU’s Department of Plant Science; professor Jim Julson and assistant professor Lin Wei in SDSU’s Department of Agricultural and Biosystems Engineering; and supervisory soil scientist Sharon Papiernik of the USDA Agricultural Research Service’s North Central Agricultural Research Laboratory in Brookings, S.D.

Process engineers and soil scientists are collaborating in the research project to learn what happens to bio-oil and biochar production when they vary the pyrolysis processing parameters.

Researchers hypothesize that biochar has different physical and chemical properties depending on the feedstock and the way it is processed. That could affect its usefulness as a soil amendment. They’ll examine the characteristics of biochar from three feedstocks: corn stover, switchgrass and woody biomass.

“There’s a lot that’s unknown about specific types of biochar. There is no single characteristic that can be used to evaluate the effectiveness of biochars,” Schumacher said.

Biochar’s pH and other characteristics can vary widely depending on what feedstock and process was used to produce it, Schumacher said. That could make biochar beneficial to the environment, neutral, or possibly even harmful, depending on its characteristics. But scientists are excited about the possibility of finding beneficial uses for a consistent, well-characterized biochar product.

“In particular, we’re interested in it as a soil amendment for soils that have erosion and degradation problems, with the idea that the biochar could be used to improve those soils,” Schumacher said. “There’s some indication that some biochars can improve water-holding capacity. Biochar also interacts with soil nutrients, holding them, keeping them from leaching. At least there’s some indication that some biochars will do it — others may not.”

Microbial activity may improve with the use of some particular kinds of biochar. And importantly, biochar is thought to have the ability to tie up carbon for centuries or even for thousands of years, meaning it could be used as a tool to slow global warming.

“We also want to explore the effects of the biochar on herbicide absorption and leaching, and how it interacts with herbicides. Does it tie it up so it’s not as effective? Does it make it more active? It may have some potential to be used in certain environmentally sensitive areas as a filter, if you would, that would tie up certain chemicals or keep them from moving,” said professor Jim Julson in SDSU’s Department of Agricultural and Biosystems Engineering.

Some types of biochar might also play a similar role in helping to tie up phosphorus to prevent it from washing out of a field with runoff — an important consideration for managing nutrients such as manure.

SDSU researchers will do laboratory and greenhouse studies, and ultimately field studies as well. The work will characterize different types of biochar in order to build a better picture of how a pyrolysis treatment plant could produce both bio-oil and biochar, in addition to the syngas that would be used for helping to supply the plant’s energy needs.

Lance Nixon | Newswise Science News
Further information:
http://www.sdstate.edu

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>