Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Farm animal disease to increase with climate change

30.06.2011
Researchers looked at changes in the behaviour of bluetongue – a viral disease of cattle and sheep - from the 1960s to the present day, as well as what could happen to the transmission of the virus 40 years into the future. They found, for the first time, that an outbreak of a disease could be explained by changes to the climate.

In Europe, more than 80,000 outbreaks of bluetongue were reported to the World Animal Health Organisation between 1998 and 2010, and millions of animals died as a result of the disease. Bluetongue was previously restricted to Africa and Asia, but its emergence in Europe is thought to be linked to increased temperatures, which allows the insects that carry the virus to spread to new regions and transmit the virus more effectively.

Researchers produced a mathematical model that explains how the risk of an outbreak of bluetongue virus in Europe changes under different climate conditions. The team examined the effect of past climate on the risk of the virus over the past 50 years to understand the specific triggers for disease outbreak over time and throughout geographical regions. This model was then driven forwards in time, using predictive climate models, to the year 2050, to show how the disease may react to future climate change.

Using these future projections, researchers found that in northern Europe there could be a 17% increase in incidence of the bluetongue virus, compared to 7% in southern regions, where it is already much warmer.

Professor Matthew Baylis, from the University's Institute of Infection and Global Health, said: "Previous study suggests that climate change will alter global disease distribution, and although we have significant knowledge of the climate triggers for particular diseases, more research is needed to identify what we think might really happen in the future.

"We have been able to show that the past emergence of a disease can be explained, in both space and time, by changes to recent climate. These results reinforce the belief that future climate change will threaten our health and well-being by causing infection to spread. Looking forward, this could help inform decision making processes on preparing for disease outbreaks and reduce the huge economic impact that farm animal diseases can have on communities."

The research is published in Proceedings of the Royal Society Interface.

Notes to editors:

1. The University of Liverpool is a member of the Russell Group of leading research-intensive institutions in the UK. It attracts collaborative and contract research commissions from a wide range of national and international organisations valued at more than £110 million annually.

Samantha Martin | EurekAlert!
Further information:
http://www.liv.ac.uk

More articles from Agricultural and Forestry Science:

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>