Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exploring an Explorer's Old Idea; Improve Semiarid Grasslands with Yellow-Flowered Alfalfa

03.09.2010
More than 100 years after an explorer first brought yellow-flowered alfalfa from Siberia to North America, South Dakota State University scientists are exploring one of his century-old ideas: use yellow-flowered alfalfa to boost the nutrition in semiarid grasslands.

Specifically, SDSU scientists are exploring whether yellow-flowered alfalfa can improve the quality of grazing in pastures of crested wheatgrass. Crested wheatgrass is a non-native, cool season grass that offers livestock good nutrition early in the year but isn’t as nutritious or palatable as temperatures warm during the summer.

Niels Ebbesen Hansen, a longtime botanist at what is now South Dakota State University as well as a self-styled “plant explorer” for the U.S. Department of Agriculture, first introduced yellow-flowered alfalfa to North America. He made eight journeys through Europe and Asia to search for plant material and is famous for finding or developing some 350 varieties of fruits, vegetables, trees and other crops.

Hansen collected seed of yellow-flowered alfalfa, Medicago falcata, already during his first expedition in 1897-98. He gathered large amounts of the seed during later expeditions in 1906, 1908-09 and 1913. He found yellow-flowered alfalfa that was adapted as far as northeastern Siberia, where it was able to endure temperatures in the range of 85 degrees below zero. That suggested to Hansen it would probably thrive on the dry, cold northern Plains — “my American Siberia,” as Hansen called it.

As early as 1909, in an inventory of plants he had recently brought back from abroad, Hansen suggested yellow-flowered alfalfa could be introduced into native pastures.

More than a century later, SDSU graduate student Chris Misar said a variation of that idea is the crux of his research. He and his professors want to know whether interseeding hardy, yellow-flowered alfalfa into crested wheatgrass pastures can allow the alfalfa to get established and bolster the nutrition available to livestock.

Ironically, crested wheatgrass is another plant introduced to North America by N.E. Hansen after he saw it at the Valuiki Experiment Station on the Volga River in Russia on a journey for the U.S. Department of Agriculture in 1897-98. But it would be decades before the grass came into wide use.

“Crested wheatgrass was not widely utilized until the 1930s and later,” Misar explained. “Crested wheatgrass was planted on many acres of abandoned cropland and degraded rangeland in the west and Great Plains for revegetation purposes. The grass saved a lot of soil from wind erosion due to its ability to grow and protect soil when environmental conditions were poor.”

Funding for SDSU’s yellow-flowered alfalfa research has come through sources such as the South Dakota Agricultural Experiment Station, the Five-State Ruminant Consortium and USFS Grand River National Grassland.

In addition, Misar was awarded a $9,060 grant from the North Central Region Sustainable Agriculture Research and Education Program for the interseeding project earlier this year as part of NCR-SARE's Grad Student Grant Program. Misar is carrying out his study in plots near Fruitdale and Buffalo in South Dakota, as well as Hettinger, N.D., and Newcastle, Wyo. He’s evaluating seeding date, seeding rate and sod suppression using herbicide as factors that all can influence the success of interseeding yellow-flowered alfalfa into crested wheatgrass.

Because it’s a legume, yellow-flowered alfalfa is able to fix nitrogen through nodules in its root system, enriching the soil for the crested wheatgrass. It also sequesters some carbon and provides additional habitat. And it’s able to flourish in locations that, in Misar’s study, receive an average 13 to 15 inches of annual precipitation. However, the challenge is getting alfalfa seedlings successfully established in crested wheatgrass stands.

Associate professor Lan Xu in SDSU’s Department of Biology and Microbiology, one of Misar’s advisers, said because both yellow-flowered alfalfa and crested wheatgrass have been established on the Northern Plains for a century now, there’s no question that both plants can survive dry, cold conditions. For example, it’s known that N.E. Hansen provided seed to Lodgepole, S.D., rancher Charles Smith in 1915, and the plant has been established in northwestern South Dakota since then.

“He introduced it nearly 100 years ago and it’s never disappeared,” Misar said. “That’s our motivation to study it — it’s been so persistent. Alfalfa that can survive in Siberia can survive here.”

SDSU range scientists also know, from studying yellow-flowered alfalfa on the Grand River National Grassland, that yellow-flowered alfalfa won’t spread wildly — it prefers fine-textured soils and moist conditions such as the low ground in swales.

“What we have learned is that yellow-flowered alfalfa has not become naturalized to the extent sweetclover and leafy spurge have on rangelands. Its distribution, including soil seed bank, is very confined,” Lan Xu said. “Plus it has incredible value as an agricultural crop.”

Lan Xu noted that naturalized yellow-flowered alfalfa found on the Grand River National Grassland is not pure Medicago falcata. It probably hybridized with purple alfalfa, Medicago sativa, in nature through pollination.

SDSU researchers also have studied the volume of seed that yellow-flowered alfalfa produces under natural conditions and have explored why its seed doesn’t germinate uniformly and readily. Lan Xu said the simple explanation is probably that it is a survival mechanism — a built-in means of staggering germination so that at least some plants are likely to encounter the conditions that allow them to come to maturity.

Diane Narem received an $1,800 Schultz-Werth Award for the outstanding research paper she wrote at SDSU as a student of Lan Xu studying that topic. Narem also was the recipient of Joseph F. Nelson Undergraduate Research Mentorship to conduct the seed germination research project. Her study probed the effects of stratification, warm treatment, and mechanical and acid scarification on the emergence of yellow-flowered alfalfa. Greater than 99 percent of yellow-flowered alfalfa seeds from the soil were viable but less than 4 percent germinated under standard laboratory conditions. The objective of the research was to determine if low germination rate was due to physical or physiological seed dormancy.

“What we have learnt from Diane’s study is the emergence rate of yellow-flowered alfalfa seeds can be significantly improved by scarification treatments, particularly sandpaper treatments. It indicated the low germination rate is most likely due to physical dormancy,” Lan Xu said. “This plant comes from Siberia. It has adapted to that very harsh and unpredictable environment so that it doesn’t all germinate at once.”

Yet another study is exploring how various alfalfa populations transplanted to the Antelope Range Research Station near Buffalo, S.D., stand up to cattle grazing over multiple growing seasons.

As Misar wraps up his master’s degree study, and as some other SDSU research continues, producers will get a better picture of what is necessary to get yellow-flowered alfalfa established in crested wheatgrass pastures, and how to include the forage in their grazing programs.

Jeanne Jones Manzer | Newswise Science News
Further information:
http://www.sdstate.edu

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>