Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exploring Echinacea’s Enigmatic Origins

08.03.2010
An Agricultural Research Service (ARS) scientist is helping to sort through the jumbled genetics of Echinacea, the coneflower known for its blossoms—and its potential for treating infections, inflammation, and other human ailments.

Only a few Echinacea species are currently cultivated as botanical remedies, and plant breeders would like to know whether other types also possess commercially useful traits.

ARS horticulturist Mark Widrlechner, who works at the ARS North Central Regional Plant Introduction Station (NCRPIS) in Ames, Iowa, is partnering in research to find out how many distinct Echinacea species exist. Previous studies have put the number between four and nine species, depending on classification criteria.

Working with Iowa State University scientists, Widrlechner selected 40 diverse Echinacea populations for DNA analysis from the many populations conserved at the NCRPIS. Most of these Echinacea populations were found to have a remarkable range of genetic diversity.

DNA analysis suggested that when much of North America was covered with glaciers, Echinacea found southern refuges on both sides of the Mississippi River. But when the glaciers receded after thousands of years, the groups came together as they moved northward and began to hybridize, which might have blurred previous genetic distinctions.

The research team also analyzed the same populations for chemical differences in root metabolites. These metabolites, which are often essential for survival and propagation, can vary widely among species and may have benefits for human health.

Using this approach, researchers were able to identify clear distinctions among all 40 populations. These distinctions were organized into three composite profiles that accounted for almost 95 percent of the metabolite variation among the populations.

Additional analysis of metabolite variation indicated that the populations grouped together in ways that aligned well with earlier Echinacea species assignments that were based on plant morphology. This work suggested that there were nine distinct species, not just four.

Results from this work were published in Planta Medica.

Read more about this research in the March 2010 issue of Agricultural Research magazine.

ARS is the principal intramural scientific research agency of the U.S. Department of Agriculture.

Ann Perry | EurekAlert!
Further information:
http://www.usda.gov

More articles from Agricultural and Forestry Science:

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>