Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First experimental evidence for speedy adaptation to pesticides by worm species

18.12.2008
Scientists at the Instituto Gulbenkian de Ciencia (IGC) and the Faculty of Science of the University of Lisbon, in Portugal, have shown that populations of the worm Caenhorabditis elegans become resistance to pesticides in 20 generations, that is, in only 80 days.

These findings, published last month in the journal PLoS ONE open the way for future research into improved use of pesticides and antibiotics in pest and parasite control.

Patrícia Lopes and co-workers followed 20 generations of the worm C. elegans in the presence of Levamisole, a widely-used pesticide that acts on the nervous system, is lethal, but also affects fecundity and mobility, when present at lower doses. They found that Levamisole markedly reduced fecundity, survival and the frequency of males.

Indeed, these almost disappeared in the population: from an initial frequency of 30%, they reached 0% by the 10th generation. The researchers showed that this drastic decrease in male frequency was not due to males being more susceptible to the pesticide than females. Rather, the pesticide affected the worms’ mobility and, consequently, their ability to find a mate.

However, the populations of worms were able to adapt to the new Levamisole environment, so that by the 10th generation, survival and fecundity had recovered, and the frequency of males increased again by the 20th generation. The ability to lose males in a population and still reproduce is only possible because C. elegans is a hermaphrodite species, that is, within a population, some worms are both male and female and can thus breed on their own, a process called ‘selfing’.

The researchers then placed the adapted worms into the original, pesticide-free environment and found that the worms survived perfectly. Scientists say that there were no adaptation costs to the population. Says Elio Sucena, group leader at the IGC and co-author of this study, ‘These findings have implications for managing the application of pesticides: if we had found that the survival of adapted worms in the original environment was impaired too, this would have meant that, by maintaining areas where the pesticide is not spread, resistance to the pesticide could be controlled, and the efficacy of the pesticide increased’.

Sara Magalhães, group leader at the University of Lisbon, points out that ‘As a result of the widespread use of pesticides and antibiotics, resistance to these chemicals has developed in many species. Our ability to manage this resistance entails being able to dissect the genetic changes underlying the acquisition of resistance. Our approach, using experimental evolution, allows us to manipulate several factors, such as population size, environmental stability and genetic background in our efforts to tackle and understand pesticide resistance, not only of C. elegans but also other pests and parasites’.

Ana Godinho | alfa
Further information:
http://www.igc.gulbenkian.pt
http://www.plosone.org/article/info:doi%2F10.1371%2Fjournal.pone.0003741

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>