Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experiment Demonstrates 110 Years of Sustainable Agriculture

01.10.2008
Researchers have shown that a plot of land on the campus of Auburn University that has been maintained by a century old practice of sustainable farming can produce similar cotton crops to those using other methods. This 110 year old continuous field experiment, called “the Old Rotation”, utilizes traditional crop rotation methods and includes winter legumes to protect the soil from winter erosion.

A plot of land on the campus of Auburn University shows that 110 years of sustainable farming practices can produce similar cotton crops to those using other methods.

In 1896, Professor J.F. Duggar at the Agricultural and Mechanical College of Alabama (now Auburn University) started an experiment to test his theories that sustainable cotton production was possible on Alabama soils if growers would use crop rotation and include winter legumes (clovers and/or vetch) to protect the soil from winter erosion.

Today, his experiment on the campus of Auburn University is the oldest, continuous cotton experiment in the world and the third oldest field crop experiment in the United States on the same site. The experiment, known as “the Old Rotation,” has continued with only slight modifications in treatments and was placed on the National Register of Historical Places in 1988.

Researchers at Auburn University and at USDA-Soil Dynamics Laboratory in Auburn, AL, have prepared the first ever comprehensive research publication covering the entire 110-yr history of this experiment. It was published in the September-October issue of Agronomy Journal, and provides insight into issues both past and present that effect sustainable crop production in the South.

The thirteen plots in the Old Rotation include (i) continuous cotton, (ii) a 2-yr rotation of cotton with corn, and (iii) a 3-year rotation of cotton-corn-wheat-soybean. These crop rotations include treatments with and without winter legumes (usually crimson clover and/or vetch) and with and without fertilizer nitrogen.

After more than 110 years, the Old Rotation continues to document the long-term effects of crop rotation and winter legumes on cotton production in the Deep South. It provides growers, students, and faculty with a living demonstration of fundamental agronomic practices that result in sustainable crop production. Long-term yields indicate that winter legumes are as effective as nitrogen fertilizer in producing non-irrigated, 10-yr average cotton yields of 1,100 pounds lint per acre. Winter legumes and crop rotations contribute to increased soil organic matter. Higher soil organic matter results in higher crop yields.

In 1997, the Old Rotation entered a new era of agricultural production where boll weevil eradication, genetically modified crops, and conservation tillage almost eliminated the need for the plow and pesticides. In 2003, irrigation was added to half of each plot. Yields of cotton, corn, wheat and soybean continue to increase far beyond the yields of Professor Duggar’s generation. Since initiating conservation tillage practices in 1997, all-time, non-irrigated record yields have been made on all the crops grown on the Old Rotation: 1,710 pounds cotton lint per acre in 2006, 95 bushels wheat per acre in 2001, 236 bushels corn per acre in 1999, and 67 bushels of double-cropped soybean per acre in 1997 after wheat.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://agron.scijournals.org/cgi/content/abstract/100/5/1493.

A peer-reviewed international journal of agriculture and natural resource sciences, Agronomy Journal is published six times a year by the American Society of Agronomy, with articles relating to original research in soil science, crop science, agroclimatology and agronomic modeling, production agriculture, and software.

The American Society of Agronomy (ASA) http://www.agronomy.org, is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | Newswise Science News
Further information:
http://www.agronomy.org
http://agron.scijournals.org

More articles from Agricultural and Forestry Science:

nachricht New study shows producers where and how to grow cellulosic biofuel crops
17.01.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Robotic weeders: to a farm near you?
10.01.2018 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>