Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ethanol Production Could Jeopardize Soil Productivity

04.06.2009
Crop residues possess a critical role in sustaining soil organic matter, and as it is increasingly being used for the production of cellulosic-based ethanol, this removal may impact the long-term productivity of soils.

There is growing interest in using crop residues as the feedstock of choice for the production of cellulosic-based ethanol because of the more favorable energy output relative to grain-based ethanol.

This would also help provide a solution to the debate of food versus fuel, because less of the grain would be diverted to ethanol production, leaving more available for food and feed consumption.

Crop residues are viewed as a low cost and readily available source of material since more than 50% of crop production is residues. However, crop residues should not be considered simply a waste or benign material. They possess a critical role in sustaining soil organic matter. Consequently, extensive removal of crop residues for ethanol production—or for other industrial purposes—may impact the long-term productivity of soils.

Agriculture and Agri-Food Canada scientists at the Indian Head Research Farm in Indian Head and the Semiarid Prairie Agricultural Research Centre in Swift Current, all located in Saskatchewan (SK), measured the impact of straw removal after 50 years on soil organic carbon (SOC) and soil organic nitrogen (SON) using the Indian Head Long-Term Rotations established in 1958. These rotations included a series of fallow–spring wheat–spring wheat crop sequences where straw was removed through baling on selected plots. In this study, straw removal with baling occurred 2 years out of 3, or 66% of the time. The study was converted to no-till in 1991.

Another 4-year study was conducted to quantify how much wheat straw is actually removed through baling when different harvesting systems are used. The three harvesting/straw removal systems involved (1) swathing-harvesting-baling, (2) straight harvesting-baling, and (3) harvesting with a stripper header-swathing-baling. Both of these studies were funded by Agriculture and Agri-Food Canada, the Panel on Energy Reduction and Development, and the Indian Head Agricultural Research Foundation.

Results from these studies were published in the May–June 2009 issue of Agronomy Journal, "Quantifying Straw Removal through Baling and Measuring the Long-Term Impact on Soil Quality and Wheat Production," by G.P. Lafond and others. The results were also presented at the annual meetings of the Indian Head Agricultural Research Foundation held in Moose Jaw, SK, on 27 Jan. 2009 and the Saskatchewan Soils and Crops Workshop on 26 Feb. 2009 in Saskatoon, SK.

Guy Lafond, who was the study leader, says, “The results would support the recommendation that some straw could be removed from fields providing that the frequency of removal was less than 66% and that no more than 40% of the aboveground residues other than grain are removed. From a crop management perspective, proper nitrogen fertility combined with no-till would further reduce the possibility of net losses in SOC and SON.”

Research is ongoing at Agriculture and Agri-Food Canada to examine different types of crops for not only their grain and end-use quality but also for their crop residue production and quality. Some crops are being developed as platforms for biomass production.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://agron.scijournals.org/cgi/content/abstract/101/3/529?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&fulltext=
quantifying&andorexactfulltext=and&searchid=1&FIRSTINDEX=0&sortspec=
relevance&resourcetype=HWCIT
A peer-reviewed international journal of agriculture and natural resource sciences, Agronomy Journal is published six times a year by the American Society of Agronomy, with articles relating to original research in soil science, crop science, agroclimatology and agronomic modeling, production agriculture, and software. For more information visit: http://agron.scijournals.org.

The American Society of Agronomy (ASA) www.agronomy.org, is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | Newswise Science News
Further information:
http://www.agronomy.org

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>