Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Era of canopy crane ending; certain research and education activities remain

29.04.2011
The 25-story construction crane used since 1995 to investigate such things as how Pacific Northwest forests absorb carbon dioxide, obtain sufficient water and resist attacks by pests and diseases is being pruned back to just the tower.

The Wind River Canopy Crane, located in a 500-year-old forest near Stevenson in southwest Washington, has been operated cooperatively by the University of Washington, the Forest Service's Pacific Northwest Research Station and the Gifford Pinchot National Forest.

The partners say the jib – the arm of the crane – is being removed because the Forest Service faces budget shortfalls and replacement parts for the crane are becoming more difficult to obtain. Funding for the crane's operation has largely come from the station's budget. The jib will be removed when money is available, possibly this summer.

Gone will be the ability to carry a gondola with researchers and instruments from the bottom to the top of trees as tall as 220 feet in a 560-foot circle of old-growth forest. The Wind River crane has the farthest reach of any of the nine forest canopy research cranes operating in the world today.

Remaining will be the 230-foot tower with sensors that collect data about how the carbon dioxide is absorbed and released by the forest, work under way since 1999. Because of the crane, the UW and the Forest Service have one of the world's longest, continuously collected data sets of carbon flux from a forest, according to Jerry Franklin, UW professor of forest resources, who was the prime mover in the 1990s for landing the $1 million project.

The carbon flux data are important as policymakers and citizens consider how to manage forests to maximize the amount of carbon they hold, he said.

Work at the crane site produced some of the first data to substantiate what Franklin and other scientists suspected in the 1980s: that old-growth Douglas fir forests weren't emitting more carbon than they were absorbing.

"Data collected at the crane site revealed that old growth forests are a sink for carbon," Franklin says.

A growing number of partners, ranging from the National Oceanic and Atmospheric Administration to the Smithsonian Institution Global Earth Observatories, count on carbon flux and isotope data being collected at the Wind River facility from the tower. Recently the site was chosen as the Pacific Northwest core site for the National Ecological Observatory Network, known as NEON, a major new initiative of the National Science Foundation.

The crane has facilitated other significant scientific discoveries, Franklin says, including seminal research on the structure of forest canopies, physiology of northwestern tree species, carbon and water cycles in forests, forest productivity and health, and the contributions of forest canopies to biodiversity, including birds, bats and insects. Researchers and students using the crane have generated more than 250 scientific publications.

The crane has, for example, enabled Pacific Northwest Research Station ecologist Rick Meinzer to study how very tall trees get the water they need to survive centuries of environmental extremes. During annual cycles of summer drought, trees rely on internal water storage to stabilize the supply of water to foliage high in the canopy, and on their deep roots to bring water close to the surface to feed shallow roots that might otherwise die every summer.

"Research using the crane has provided important insights about the factors that limit maximum tree height and why height growth slows drastically as a tree becomes taller," Meinzer says. "The tower will continue to be part of the nationwide network for continuous camera observation of changes in the timing of events such as leaf emergence and senescence, which are being influenced by climate change. Camera images are updated continuously and are available to both scientists and the public through websites."

The tower site and experimental forest also will continue to provide educational opportunities for high-school and college students focused on forest ecology, population dynamics and functions such as the cycling of carbon, water and nutrients.

For more information:

Franklin, jff@uw.edu

Meinzer, 541-758-7798, fmeinzer@fs.fed.us

Additional images available, see link below and request higher resolution versions from Sandra Hines: http://www.washington.edu/news/articles/era-of-canopy-crane-ending-certain-research-and-education-activities-remain

Suggested links

Crane homepage
http://depts.washington.edu/wrccrf/
Crane details
http://depts.washington.edu/wrccrf/crane.html
List of publications from crane research
http://depts.washington.edu/wrccrf/docs/WRCCRFPubList.html
UW School of Forest Resources
http://www.cfr.washington.edu/
Forest Service's Pacific Northwest Research Station
http://www.fs.fed.us/pnw/
Gifford Pinchot National Forest
http://tinyurl.com/GiffordPinchot
NEON, National Ecological Observatory Network
http://www.neoninc.org/
Jerry Franklin
http://faculty.washington.edu/jff/
Rick Meinzer
http://www.fs.fed.us/pnw/about/programs/ecop/canopy.shtml
Sampling of findings, opportunities:
Scientists interested in comparing the canopies of young and old-growth Douglas fir forests used the crane to document how completely different the structure – or architecture – of the older forest is.

The complexity of older canopies – with branches and foliage from the bottom to the top of trees – is one reason older forests are good at taking up carbon dioxide, research at the crane showed. There's a lot more "leaf area" than in younger forests where foliage is mainly at the tops of trees.

Research at the crane has revealed some of the ecosystem advantages of complex forest canopies and insight into how younger forests might be managed for more complexity if we wish.

As to the puzzle of how old growth Douglas firs can thrive for centuries after they stop growing taller and their crowns stop getting fuller, work at the crane was the first to definitively show that old trees generate new growth from dormant buds on their lower branches. It's more proof of the active growing in stands once considered to be in a state of decay.

The crane has provided educational opportunities for thousands of college students, teachers and natural resource professionals. At the secondary level, among other things, the crane was part of a television broadcast that reached 7 million students in North America.

The crane is located in the Wind River Experimental Forest of the Gifford National Forests where for nearly 100 years studies have been conducted into nursery practices, seedling survival and growth, genetics and ecology.

Sandra Hines | EurekAlert!
Further information:
http://www.uw.edu

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>