Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Environmental effects of cold-climate strawberry farming

08.09.2009
Advanced matted-row system proves most environmentally sustainable

Strawberries are America's fifth-favorite fruit, according to consumption rates. California and Florida grow more than 95% of the nation's strawberries; an additional 12,000 acres are planted in other states.

Strawberries are increasingly grown on small-scale farms in direct-to-consumer markets, which are gaining popularity as part of the emerging "local food movement". But how do growing methods designed to ensure successful strawberry production in colder climates affect the environment?

Matthew D. Stevens, currently with North Carolina State University, and a team of USDA-Agricultural Research Services (ARS) researchers developed an experiment to shed light on that question. Stevens conducted the research while working as a graduate student at the USDA-ARS. Three methods of growing strawberries were compared for the study published in HortScience.

The conventional matted row system (CMR) has been the primary method in colder areas. Recently, use of a second method, cold-climate plasticulture (CCP), has increased. Both rely on fumigation and pesticides to protect plants, but use of these elements is being restricted because of environmental concerns. This has led to the development of alternative pest-control measures, including advanced matted row (AMR), the third method tested in the study.

Growing practices were evaluated on sustainability, soil and water conservation, and reduction of movement of soil, nutrients, and pesticides from fields to nearby water sources. Pesticides, nutrients, and soil particles moved from fields to water systems, even through naturally occurring runoff, have significant negative effects for aquatic ecosystems.

In the AMR beds, a cover crop was planted and later mowed down to create a protective vegetative layer, which reduces weed growth. Both CMR and CCP methods use plastic sheeting to limit weeds. As few insects were observed, no insecticides were used. Automated runoff samplers kept track of the water and soil movement. Runoff samples were analyzed for nitrate, ammonium, and pesticide concentrations. Plants were also analyzed for carbon and nitrogen.

Annual mean soil loss was significantly greater in the CMR compared to the AMR, but neither the CMR nor the AMR annual mean soil loss was significantly different from the annual mean soil loss of the CCP in 2002. Though the annual mean soil losses for CMR and AMR were significantly greater than for CCP, the difference between CMR and AMR was not significant in 2003. Annual mean soil losses in 2004 were not significantly different across the planting methods.

The results indicate that the intensity, duration, and timing of precipitation affected the soil and pesticide losses and runoff volume more than the type of planting system.

Timing of fertilization is very important in CMR production because fertilizer is sprayed onto the plants. This method produced low nutrient uptake and high nutrient runoff. AMR and CCP plants were fertilized underground and resulted in higher nutrient uptake and lower nutrient runoff compared with CMR. Furthermore, CMR plots had the greatest pesticide losses. This makes the CMR system the least effective in controlling soil and pesticide losses. The AMR system was best for erosion control in the first year, but the CCP was better the following year. AMR runoff also had the lowest pesticide levels.

"These observations suggest that the AMR and CCP systems have less negative effects on our natural resources than the CMR system," Stevens remarked. And, because it does not use non-biodegradable plastic mulch that must be disposed of in a landfill, AMR is more environmentally sustainable for cold-climate strawberry production.

The complete study and abstract are available on the ASHS Hortscience electronic journal web site: http://hortsci.ashspublications.org/cgi/content/abstract/44/2/298

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application.

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Glycosylation: Mapping Uncharted Territory

21.09.2017 | Life Sciences

Highly precise wiring in the Cerebral Cortex

21.09.2017 | Health and Medicine

Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?

21.09.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>