Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Environmental effects of cold-climate strawberry farming

08.09.2009
Advanced matted-row system proves most environmentally sustainable

Strawberries are America's fifth-favorite fruit, according to consumption rates. California and Florida grow more than 95% of the nation's strawberries; an additional 12,000 acres are planted in other states.

Strawberries are increasingly grown on small-scale farms in direct-to-consumer markets, which are gaining popularity as part of the emerging "local food movement". But how do growing methods designed to ensure successful strawberry production in colder climates affect the environment?

Matthew D. Stevens, currently with North Carolina State University, and a team of USDA-Agricultural Research Services (ARS) researchers developed an experiment to shed light on that question. Stevens conducted the research while working as a graduate student at the USDA-ARS. Three methods of growing strawberries were compared for the study published in HortScience.

The conventional matted row system (CMR) has been the primary method in colder areas. Recently, use of a second method, cold-climate plasticulture (CCP), has increased. Both rely on fumigation and pesticides to protect plants, but use of these elements is being restricted because of environmental concerns. This has led to the development of alternative pest-control measures, including advanced matted row (AMR), the third method tested in the study.

Growing practices were evaluated on sustainability, soil and water conservation, and reduction of movement of soil, nutrients, and pesticides from fields to nearby water sources. Pesticides, nutrients, and soil particles moved from fields to water systems, even through naturally occurring runoff, have significant negative effects for aquatic ecosystems.

In the AMR beds, a cover crop was planted and later mowed down to create a protective vegetative layer, which reduces weed growth. Both CMR and CCP methods use plastic sheeting to limit weeds. As few insects were observed, no insecticides were used. Automated runoff samplers kept track of the water and soil movement. Runoff samples were analyzed for nitrate, ammonium, and pesticide concentrations. Plants were also analyzed for carbon and nitrogen.

Annual mean soil loss was significantly greater in the CMR compared to the AMR, but neither the CMR nor the AMR annual mean soil loss was significantly different from the annual mean soil loss of the CCP in 2002. Though the annual mean soil losses for CMR and AMR were significantly greater than for CCP, the difference between CMR and AMR was not significant in 2003. Annual mean soil losses in 2004 were not significantly different across the planting methods.

The results indicate that the intensity, duration, and timing of precipitation affected the soil and pesticide losses and runoff volume more than the type of planting system.

Timing of fertilization is very important in CMR production because fertilizer is sprayed onto the plants. This method produced low nutrient uptake and high nutrient runoff. AMR and CCP plants were fertilized underground and resulted in higher nutrient uptake and lower nutrient runoff compared with CMR. Furthermore, CMR plots had the greatest pesticide losses. This makes the CMR system the least effective in controlling soil and pesticide losses. The AMR system was best for erosion control in the first year, but the CCP was better the following year. AMR runoff also had the lowest pesticide levels.

"These observations suggest that the AMR and CCP systems have less negative effects on our natural resources than the CMR system," Stevens remarked. And, because it does not use non-biodegradable plastic mulch that must be disposed of in a landfill, AMR is more environmentally sustainable for cold-climate strawberry production.

The complete study and abstract are available on the ASHS Hortscience electronic journal web site: http://hortsci.ashspublications.org/cgi/content/abstract/44/2/298

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application.

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org

More articles from Agricultural and Forestry Science:

nachricht The farm of the future?
01.03.2017 | American Chemical Society

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>