Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Environmental effects of cold-climate strawberry farming

08.09.2009
Advanced matted-row system proves most environmentally sustainable

Strawberries are America's fifth-favorite fruit, according to consumption rates. California and Florida grow more than 95% of the nation's strawberries; an additional 12,000 acres are planted in other states.

Strawberries are increasingly grown on small-scale farms in direct-to-consumer markets, which are gaining popularity as part of the emerging "local food movement". But how do growing methods designed to ensure successful strawberry production in colder climates affect the environment?

Matthew D. Stevens, currently with North Carolina State University, and a team of USDA-Agricultural Research Services (ARS) researchers developed an experiment to shed light on that question. Stevens conducted the research while working as a graduate student at the USDA-ARS. Three methods of growing strawberries were compared for the study published in HortScience.

The conventional matted row system (CMR) has been the primary method in colder areas. Recently, use of a second method, cold-climate plasticulture (CCP), has increased. Both rely on fumigation and pesticides to protect plants, but use of these elements is being restricted because of environmental concerns. This has led to the development of alternative pest-control measures, including advanced matted row (AMR), the third method tested in the study.

Growing practices were evaluated on sustainability, soil and water conservation, and reduction of movement of soil, nutrients, and pesticides from fields to nearby water sources. Pesticides, nutrients, and soil particles moved from fields to water systems, even through naturally occurring runoff, have significant negative effects for aquatic ecosystems.

In the AMR beds, a cover crop was planted and later mowed down to create a protective vegetative layer, which reduces weed growth. Both CMR and CCP methods use plastic sheeting to limit weeds. As few insects were observed, no insecticides were used. Automated runoff samplers kept track of the water and soil movement. Runoff samples were analyzed for nitrate, ammonium, and pesticide concentrations. Plants were also analyzed for carbon and nitrogen.

Annual mean soil loss was significantly greater in the CMR compared to the AMR, but neither the CMR nor the AMR annual mean soil loss was significantly different from the annual mean soil loss of the CCP in 2002. Though the annual mean soil losses for CMR and AMR were significantly greater than for CCP, the difference between CMR and AMR was not significant in 2003. Annual mean soil losses in 2004 were not significantly different across the planting methods.

The results indicate that the intensity, duration, and timing of precipitation affected the soil and pesticide losses and runoff volume more than the type of planting system.

Timing of fertilization is very important in CMR production because fertilizer is sprayed onto the plants. This method produced low nutrient uptake and high nutrient runoff. AMR and CCP plants were fertilized underground and resulted in higher nutrient uptake and lower nutrient runoff compared with CMR. Furthermore, CMR plots had the greatest pesticide losses. This makes the CMR system the least effective in controlling soil and pesticide losses. The AMR system was best for erosion control in the first year, but the CCP was better the following year. AMR runoff also had the lowest pesticide levels.

"These observations suggest that the AMR and CCP systems have less negative effects on our natural resources than the CMR system," Stevens remarked. And, because it does not use non-biodegradable plastic mulch that must be disposed of in a landfill, AMR is more environmentally sustainable for cold-climate strawberry production.

The complete study and abstract are available on the ASHS Hortscience electronic journal web site: http://hortsci.ashspublications.org/cgi/content/abstract/44/2/298

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application.

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>