Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The effect of landscape position on biomass crop yield

17.03.2010
Creating a multifunctional agricultural system

The emergence of biofuels into agricultural systems presents new opportunities for farmers to improve economic return while providing critical ecosystem services. Integrating perennial crops can help meet food, fuel and fiber needs, but will require an understanding of biomass productivity on specific landscape positions and environments. To diversify their farms, farmers will need to know where their crops will give them the best yield.

Landscape processes, such as hill slope length and gradient, water retention and flow patterns, and soil properties have been shown to influence crop yield. In recent years, the process of describing and analyzing landscape terrain features has become more accurate and precise due to advances in Geographic Information Systems technology, allowing farmers and landowners to explore new cropping systems design strategies, such as directed placement of annual and perennial crops.

Scientists at the University of Minnesota led by Gregg Johnson investigated differences in woody and herbaceous crop productivity and biomass yield as a function of landscape position at the field scale. Results from this study were published in the 2010 March-April issue of the Agronomy Journal. The journal is published by the American Society of Agronomy. The study was supported by the Initiative for Renewable Energy and the Environment at the University of Minnesota.

The researchers sleeved seven varying landscape positions to represent a range of topographical features common to the region with varying soil moisture and erosion characteristics. Within each landscape position, a series of woody and herbaceous annual and perennial crops were planted. Crops included alfalfa, corn, willow, cottonwood, poplar, and switchgrass.

The results of this study demonstrate that hillslope processes influence biomass productivity. Corn grain and stover yield was lowest in flat and depositional areas that retain water for longer periods of time and highest on well drained summit positions. Corn grain yield was not significantly influenced by any of the soil or terrain attributes tested, but corn stover yield was positively influenced by nitrogen, soil darkness profile, and terrain slope.

Willow productivity, on the other hand, was among the highest at the depositional position and lowest at the summit position. Alfalfa and poplar productivity was highest at a site characterized by a relatively steep slope with potentially erosive soils. Understanding landscape position preferences of crops could allow for more efficient use of field space that reduces the risks of traditional agriculture.

This research will help to develop a multifunctional approach to agricultural land management where environmental and ecological components are considered, based on a sound economic foundation. For example, a desire to improve water quality or wildlife habit while maintaining productivity and profitability may define decision making in this context.

Including perennial crops as part of the overall cropping system is one option for improving profitability while meeting water quality and/or wildlife habitat goals. Overall, this study represents a novel approach to the design of cropping system strategies that lead to optimizing the landscape through a deeper understanding of site-specific crop growth in the context of economic, environmental, and social goals.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://agron.scijournals.org/cgi/content/full/102/2/513

A peer-reviewed international journal of agriculture and natural resource sciences, Agronomy Journal is published six times a year by the American Society of Agronomy, with articles relating to original research in soil science, crop science, agroclimatology and agronomic modeling, production agriculture, and software. For more information visit: http://agron.scijournals.org.

The American Society of Agronomy (ASA) www.agronomy.org, is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | EurekAlert!
Further information:
http://www.agronomy.org

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>