Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The effect of landscape position on biomass crop yield

Creating a multifunctional agricultural system

The emergence of biofuels into agricultural systems presents new opportunities for farmers to improve economic return while providing critical ecosystem services. Integrating perennial crops can help meet food, fuel and fiber needs, but will require an understanding of biomass productivity on specific landscape positions and environments. To diversify their farms, farmers will need to know where their crops will give them the best yield.

Landscape processes, such as hill slope length and gradient, water retention and flow patterns, and soil properties have been shown to influence crop yield. In recent years, the process of describing and analyzing landscape terrain features has become more accurate and precise due to advances in Geographic Information Systems technology, allowing farmers and landowners to explore new cropping systems design strategies, such as directed placement of annual and perennial crops.

Scientists at the University of Minnesota led by Gregg Johnson investigated differences in woody and herbaceous crop productivity and biomass yield as a function of landscape position at the field scale. Results from this study were published in the 2010 March-April issue of the Agronomy Journal. The journal is published by the American Society of Agronomy. The study was supported by the Initiative for Renewable Energy and the Environment at the University of Minnesota.

The researchers sleeved seven varying landscape positions to represent a range of topographical features common to the region with varying soil moisture and erosion characteristics. Within each landscape position, a series of woody and herbaceous annual and perennial crops were planted. Crops included alfalfa, corn, willow, cottonwood, poplar, and switchgrass.

The results of this study demonstrate that hillslope processes influence biomass productivity. Corn grain and stover yield was lowest in flat and depositional areas that retain water for longer periods of time and highest on well drained summit positions. Corn grain yield was not significantly influenced by any of the soil or terrain attributes tested, but corn stover yield was positively influenced by nitrogen, soil darkness profile, and terrain slope.

Willow productivity, on the other hand, was among the highest at the depositional position and lowest at the summit position. Alfalfa and poplar productivity was highest at a site characterized by a relatively steep slope with potentially erosive soils. Understanding landscape position preferences of crops could allow for more efficient use of field space that reduces the risks of traditional agriculture.

This research will help to develop a multifunctional approach to agricultural land management where environmental and ecological components are considered, based on a sound economic foundation. For example, a desire to improve water quality or wildlife habit while maintaining productivity and profitability may define decision making in this context.

Including perennial crops as part of the overall cropping system is one option for improving profitability while meeting water quality and/or wildlife habitat goals. Overall, this study represents a novel approach to the design of cropping system strategies that lead to optimizing the landscape through a deeper understanding of site-specific crop growth in the context of economic, environmental, and social goals.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at

A peer-reviewed international journal of agriculture and natural resource sciences, Agronomy Journal is published six times a year by the American Society of Agronomy, with articles relating to original research in soil science, crop science, agroclimatology and agronomic modeling, production agriculture, and software. For more information visit:

The American Society of Agronomy (ASA), is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>