Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drivers of temporal changes in temperate forest plant diversity

27.07.2015

Together with an international team, an ecologist of the University of Jena (Germany) presents a detailed analysis of biodiversity for temperate forests in Europe

Climate change, environmental pollution or land use changes – there are numerous influences threatening biodiversity in forests around the globe. The resulting decrease in biodiversity is a matter of common knowledge today – amongst scientists as well as amongst the general public.


Alder swamp forest with thick herb layer. Scientists found out that – on average – the biodiversity in the herb layer has not changed in recent decades.

Photo: Markus Bernhardt-Roemermann/FSU Jena

But this is a simplified view, says Dr. Markus Bernhardt-Römermann of the Friedrich Schiller University Jena (Germany). “At least a trend like this doesn't apply to all forests on the local scale.“ This is the result of a new study by the Jena ecologist and co-authors which is published today (27th July) in the scientific journal 'Global Change Biology' (DOI: 10.1111/gcb.12993).

Biodiversity in the herb layer has not changed in recent decades

Together with an international team of scientists from all over Europe, Bernhardt-Römermann comprehensively analysed the biodiversity in forests of the temperate zone of Europe. They found out that – on average – the biodiversity in the herb layer has not changed in recent decades.

This initially surprising result however doesn't mean that all is well in terms of biodiversity, as the ecologist points out: “The changes can be really grave on the local level.” In some areas, biodiversity has clearly been on the decrease, while at the same time it has been increasing in others.

Bernhardt-Römermann and his colleagues analysed data derived from the research platform “forestREplot“, which was established by scientists from Belgium, the Czech Republic and the USA together with the Jena ecologist Bernhardt-Römermann.

In a database, data characterizing the temporal development of plant species composition in forests of the temperate climate zone around the world is collected. “When data on the vegetation is collected on the same plot at several time steps, temporal changes can be identified,” Bernhardt-Römermann says.

For the new study the ecologists combined data from 13 European countries – from Switzerland and Hungary in the South to Sweden in the North and from Ireland in the West to Poland in the East – in one joint analysis. They analysed data form 39 selected deciduous forests at two different points in time (with a span of 17 to 75 years in between) and related them to changes in climate, forests management, nitrogen deposition and game population. The scientists were thus able to show the factors that are pivotal for the change of diversity in a particular area.

“We noticed that all in all the climate changes don't trigger a major change in diversity,” Bernhardt-Römermann sums up the baffling result. Much more influential for the diversity in the herb layer – apart from local factors like lighting conditions which can vary depending on forestry use – are most of all the availability of nitrogen and the density of the local game population. Thus for instance, populations of species which prefer open, thermophilous forests on mostly nutrient-poor soils are declining – such as the mountain sedge (Carex montana) or the scentless feverfew (Tanacetum corymbosum). At the same time, the remote sedge (Carex remota), the narrow buckler fern (Dryopteris carthusiana) and the rough bluegrass (Poa trivialis) – which grow in shaded and moist conditions often associated with increased nutrient availability – thrive distinctively better.

As a consequence from their findings, the researchers recommend to base future predictions for the development of biodiversity not only on global criteria like climate changes or land use scenarios, as these do not sufficiently take into consideration important local conditions. The local influences like game population and nitrogen availability should much rather be taken into account as well to improve the quality of predictions.

Original Publication:
Bernhardt-Römermann M, Baeten L, Craven D, De Frenne P, Hédl R, Lenoir J, Bert D, Brunet J, Chudomelová M, Decocq G, Dierschke H, Dirnböck T, Dörfler I, Heinken T, Hermy M, Hommel P, Jaroszewicz B, Keczyński A, Kelly DL, Kirby KJ, Kopecký M, Macek M, Máliš F, Mirtl M, Mitchell FJG, Naaf T, Newman M, Peterken G, Petřík P, Schmidt W, Standovár T, Tóth Z, Van Calster H, Verstraeten G, Vladovič J, Vild O, Wulf M, Verheyen K: Drivers of temporal changes in temperate forest plant diversity vary across spatial scales. Global Change Biology (2015). DOI: 10.1111/gcb.12993

Contact:
Dr. Markus Bernhardt-Römermann
Institute of Ecology
Friedrich Schiller University Jena
Dornburger Straße 159, 07743 Jena
Germany
Phone: +49 3641 / 949435
E-mail: markus.bernhardt[at]uni-jena.de

Weitere Informationen:

http://www.uni-jena.de/en/start.html

Dr. Ute Schönfelder | idw - Informationsdienst Wissenschaft

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>