Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dow AgriSciences, MU Researcher Develop a Way to Control “Superweed”

24.01.2011
They pop up in farm fields across 22 states, and they’ve been called the single largest threat to production agriculture that farmers have ever seen.

They are “superweeds” – undesirable plants that can tolerate multiple herbicides, including the popular gylphosate, also known as RoundUp – and they cost time and money because the only real solution is for farmers to plow them out of the field before they suffocate corn, soybeans or cotton.

Now, thanks to the work of researchers at Dow AgroSciences, LLC, who have been collaborating with a University of Missouri researcher, a new weapon may be on the horizon to eliminate superweeds.

Zhanyuan Zhang, a research associate professor of plant sciences and director of the MU Plant Transformation Core facility, partnered with research scientists at Dow AgroSciences, LLC, to engineer soybean plants that can tolerate an alternative herbicide that may help slow the spread of superweeds, such as tall waterhemp.

According to an article in the May 3 edition of the New York Times, farmers considered RoundUp a “miracle chemical” when it was introduced because it killed a wide variety of weeds, is safe to work with, and broke down quickly, reducing environmental impact. However, weeds quickly evolved to survive gylphosate, and that threatened to reverse an agricultural advance known as minimum-till farming. As the superweeds survive in the fields, farmers must spend more time to get rid of them, even going so far as pulling the weeds by hand. The Times noted that there were 10 resistant species in at least 22 states infesting millions of acres of farmland.

Using a massive genetic database and a bioinformatic approach, Dow AgroSciences researchers identified two bacterial enzymes that, when transformed into plants, conferred resistance to an herbicide called “2,4-D,” commonly used in controlling dandelions. The enzymes were successfully put into corn and soybean plants, and those new plants showed excellent resistance to 2,4-D, including no negative effects on yield or other agronomic traits. Other advantages of 2,4-D include low cost, short environmental persistence, and low toxicity to humans and wildlife.

“Unlike glyphosate, which targets amino acid synthesis, 2,4-D is a hormone regulator. Because it has a different mode of action, 2,4-D is an ideal herbicide to deal with glyphosate-resistant weeds,” said Zhang, who managed the soybean transformation portion of the study and contributed to some data analysis.

Zhang believes that 2,4-D could eventually be combined with other herbicides in the near future. In the meantime, Zhang says an integrated weed management plan can help farmers be productive and ultimately save money for the consumer.

“The less chemicals farmers use in the field, the less money they spend on production,” said Zhang. “That leads to less cost for the consumer, as well as improved food safety and environmental safety.”

Study results were published in the November issue of The Proceedings of the National Academies of Science.

Steven Adams | EurekAlert!
Further information:
http://www.missouri.edu

Further reports about: AgriSciences AgroSciences gylphosate soybean soybean plants superweed

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>