Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


To double spud production, just add a little spit

When it comes to potentially doubling the output of the world's fourth largest food crop, the secret may be in the spit.

Researchers at Cornell University, as well as the University of Goettingen and National University of Colombia, have discovered that when a major South American pest infests potato tubers, the plant produces bigger spuds.

The secret to this increased yield, they write in the peer-reviewed journal Ecological Applications (April 28, 2010), is found that the saliva of the Guatemalan potato moth larvae (Tecia solanivora). The major pest, which forces many farmers to spray plants with pesticides every two weeks, contains compounds in its foregut that elicits a system-wide response in the Colombian Andes commercial potato plant (Solanum tuberosum) to produce larger tubers.

The researchers found that when the spit of the tuber moth caterpillar gets into a tuber, all the other tubers of the plant grow bigger, said co-author André Kessler, Cornell assistant professor of ecology and evolutionary biology. Researchers believe that compounds from the insect's saliva somehow increases the rate of the plant's photosynthesis to compensate for the tubers lost to the caterpillar damage. As a result of more photosynthesis, more carbon is drawn into the plant and used to create starch, which makes for bigger tubers.

Plants have a number of responses to insects and other animals that eat them, including changing metabolism or producing toxins, said Kessler. In turn, the herbivores may develop strategies to counter the plant's defenses and influence its signaling pathways.

"This could be an example where the co-evolutionary arms race led to a beneficial outcome for both," said Kessler.

Another key seems to be getting the right mix of potato and pest.

When the larvae infested fewer than 10 percent of the tubers, the plant produced marketable yields (after infested tubers were removed) that weighed 2.5 times more than undamaged plants, according to the study. When up to 20 percent of the potatoes were damaged, marketable yields still doubled. When as many as half of the potatoes were infested, yields equaled those of plants with no infestation.

The findings have implications for potato farmers. Once isolated, the compound could lead to considerably higher yields in some varieties.

Initially, researchers wanted to show how these pests reduced potato yields, but they actually they found yield increases, said Katja Poveda, the study's principal investigator, at the Agroecology Institute of the University of Goettingen, Germany, and the Cornell entomology department.

"The moth eats all varieties of potatoes, but so far only this one variety responded" with increased yields among seven varieties that were tested as part of a larger project, said Poveda. Future experiments will test more commercial varieties, as well as wild potatoes, she added.

The potato study was funded by the German Research Foundation.
The study can be found online at

John Carberry | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>