Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why domestic animals changed coat

16.01.2009
You notice it in your everyday life, the bewildering diversity in coat colour among our pigs, dogs and other domestic animals. This stark contrasts with the uniformity of colour within wild animals.

A new study on pigs, published January 16 in the open-access journal PLoS Genetics, reveals that the prime explanation for this phenomenon is that humans have actively changed the coat colour of domestic animals by cherry-picking and actively selecting for rare mutations and that this process that has been going on for thousands of years.

This result is important since it eliminates several other explanations for coat colour changes within domestic animals. One alternative idea was that wild type colour was lost because the pressure to remain camouflage was eliminated. This kind of change is analogous to the loss of vision in animals that live in complete darkness, such as caves. Others proposed that the change of colour was a by-product of domestication because some genes control both a trait under strong selection (e.g. behaviour) and colour. “Our study settles the debate by showing that the prime reason is intentional selection by humans”, says Leif Andersson at Uppsala University who led the study.

The researchers studied one of the key genes controlling coat colour in animals, the melanocortin-1 receptor (MC1R) gene, in both wild and domestic pigs from Europe and Asia. Though there were numerous differences in DNA sequence among the wild boar, none of them altered the protein function, and thus the coat colour remained camouflaged. This result demonstrates that mutations that do change the MC1R protein are quickly removed from wild populations in order to maintain camouflage colouration. In domestic pigs, however, nearly all observed DNA changes changed protein function leading to a wide variety of different colors.

Compared with the wild-type sequence, some of the domestic MC1R variants differed by up to three consecutive changes, thus revealing that domestic coat colour variation is not a recent phenomenon. “We know that the Mesopotamians were keeping track of differently coloured farm animals 5,000 years ago, and our results suggest black and white and spotted pets and livestock may have been around a lot longer than that”, said Greger Larson, a Research Fellow at Uppsala University and at Durham University.

So why did early farmers bother to change the coat of their livestock? One explanation could be that it facilitated animal husbandry since it is easier to keep track of livestock that are not camouflaged. Another could be that it has acted as a metaphor for the improved characteristics of the early forms of livestock compared with their wild ancestors. A third possibility is that the early farmers were as amused and as taken with biological novelty and diversity as we are today.

The present study also sheds light on the process of molecular evolution. Charles Darwin was the first to recognize the importance of studying domestic animals as a model of evolution. An argument that has been raised against Darwin’s theory is that is impossible to create complicated structures like an eye, based on the underlying random process of mutation. “This study shows how quickly a protein can change under strong selection and how humans have “created” black-spotted pigs by selecting several consecutive mutations that have occurred by a random process”, says Leif Andersson.

This project was funded by the European Commission, the European Molecular Biology Organization, the Swedish Foundation for Strategic Research, and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning.

Anneli Waara | alfa
Further information:
http://www.uu.se

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>