Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Why domestic animals changed coat

You notice it in your everyday life, the bewildering diversity in coat colour among our pigs, dogs and other domestic animals. This stark contrasts with the uniformity of colour within wild animals.

A new study on pigs, published January 16 in the open-access journal PLoS Genetics, reveals that the prime explanation for this phenomenon is that humans have actively changed the coat colour of domestic animals by cherry-picking and actively selecting for rare mutations and that this process that has been going on for thousands of years.

This result is important since it eliminates several other explanations for coat colour changes within domestic animals. One alternative idea was that wild type colour was lost because the pressure to remain camouflage was eliminated. This kind of change is analogous to the loss of vision in animals that live in complete darkness, such as caves. Others proposed that the change of colour was a by-product of domestication because some genes control both a trait under strong selection (e.g. behaviour) and colour. “Our study settles the debate by showing that the prime reason is intentional selection by humans”, says Leif Andersson at Uppsala University who led the study.

The researchers studied one of the key genes controlling coat colour in animals, the melanocortin-1 receptor (MC1R) gene, in both wild and domestic pigs from Europe and Asia. Though there were numerous differences in DNA sequence among the wild boar, none of them altered the protein function, and thus the coat colour remained camouflaged. This result demonstrates that mutations that do change the MC1R protein are quickly removed from wild populations in order to maintain camouflage colouration. In domestic pigs, however, nearly all observed DNA changes changed protein function leading to a wide variety of different colors.

Compared with the wild-type sequence, some of the domestic MC1R variants differed by up to three consecutive changes, thus revealing that domestic coat colour variation is not a recent phenomenon. “We know that the Mesopotamians were keeping track of differently coloured farm animals 5,000 years ago, and our results suggest black and white and spotted pets and livestock may have been around a lot longer than that”, said Greger Larson, a Research Fellow at Uppsala University and at Durham University.

So why did early farmers bother to change the coat of their livestock? One explanation could be that it facilitated animal husbandry since it is easier to keep track of livestock that are not camouflaged. Another could be that it has acted as a metaphor for the improved characteristics of the early forms of livestock compared with their wild ancestors. A third possibility is that the early farmers were as amused and as taken with biological novelty and diversity as we are today.

The present study also sheds light on the process of molecular evolution. Charles Darwin was the first to recognize the importance of studying domestic animals as a model of evolution. An argument that has been raised against Darwin’s theory is that is impossible to create complicated structures like an eye, based on the underlying random process of mutation. “This study shows how quickly a protein can change under strong selection and how humans have “created” black-spotted pigs by selecting several consecutive mutations that have occurred by a random process”, says Leif Andersson.

This project was funded by the European Commission, the European Molecular Biology Organization, the Swedish Foundation for Strategic Research, and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning.

Anneli Waara | alfa
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>