Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA blueprint for healthier and more efficient cows

27.04.2009
Ground breaking findings by an international consortium of scientists who sequenced and analysed the bovine genome, could result in more sustainable food production.

The findings, published in two reports in the journal Science today, will have a profound impact on Australia’s livestock industry.

CSIRO scientists were among the 300 researchers from 25 countries involved in the six-year Bovine Genome Sequencing Project designed to sequence, annotate and analyse the genome of a female Hereford cow called L1 Dominette.

The scientists discovered that the bovine genome contains 2,870 billion DNA building blocks, encoding a minimum of 22,000 genes. Of major interest to scientists are the differences in the organisation of the genes involved in lactation, reproduction, digestion and metabolism in cows compared to other mammals.

One of the lead authors of the report on the project’s latest findings, CSIRO Livestock Industries researcher Dr Ross Tellam said the bovine genome has about 14,000 genes which are common to all mammals and these constitute the ‘engine room’ of mammalian biology.

“The team found that cows share about 80 per cent of their genes with humans, also providing us with a better understanding of the human genome,” Dr Tellam said.

“One of the surprises in the analysis was that cow and human proteins have more in common than mouse and human proteins, yet it is the mouse that is often used in medical research as a model of human disease conditions.”

Dr Tellam said the research provides an insight into the unique biology and evolution of ruminant animals and helps explain why they have been so successful as a species.

One of the major findings was that the cow has significant rearrangements in many of its immune genes and presumably an enhanced natural ability to defend itself from disease.

“This may be an evolutionary response to an increased risk of opportunistic infections at mucosal surfaces caused by the large number of bacteria and fungi carried in the rumen (the largest of the four compartments that make up the bovine stomach),” Dr Tellam said.

“The second possible explanation is that ruminants and cows are typically found in very large herds, and in these herds there is a greater propensity for disease transmission, so you need to be better equipped to withstand diseases.”

These new findings will point the way for future research that could result in more sustainable food production.

Dr Tellam said the $US53 million Bovine Genome Sequencing Project – led by the Human Genome Sequencing Centre at Baylor College of Medicine (BCM-HGSC) in Houston, Texas – is an example of major achievements that can only be realised by substantial international scientific cooperation.

Using the complete genome sequence from L1 Dominette, the female Hereford cow, scientists also undertook comparative genome sequencing for six more breeds to look for genetic changes.

The resulting bovine HapMap – a literal map of genetic diversity among different populations – is also published in today’s edition of the journal Science.

“Domestication and artificial selection appear to have left detectable signatures of selection within the cattle genome yet the current level of diversity within breeds is at least as great as that found within humans,” CSIRO Livestock Industries scientist and one of the project’s group leaders, Dr Bill Barendse, said.

The implications of the genome project for the beef and dairy industries are enormous.

“The availability of very large numbers of single nucleotide polymorphisms (DNA changes in the genetic blueprint) has allowed the development of gene chips that measure genetic variation in cattle populations and will allow the rapid selective breeding of animals with higher value commercial traits.

“This technology is quickly transforming the dairy genetics industry and has the potential to dramatically alter beef cattle industries as well,” Dr Barendse said.

These new genetic tools may provide a means to select more energy-efficient animals with a smaller environmental footprint, particularly animals that produce less greenhouse gas.

The Bovine Sequencing and Analysis Project was led by Drs Richard Gibbs and George Weinstock, co-directors of the BCM-HGSC, Dr Steven Kappes of the US Department of Agriculture, Dr Christine Elsik of Georgetown University and Dr Ross Tellam of CSIRO Australia.

In addition to CSIRO, major funders of the Project were: the National Human Genome Research Institute, which funded more than half of the project; the U.S. Department of Agriculture's Agricultural Research Service and Cooperative State Research, Education, and Extension Service National Research Initiative; the state of Texas; Genome Canada through Genome British Columbia; The Alberta Science and Research Authority; Agritech Investments Ltd., Dairy Insight, Inc. and AgResearch Ltd., all of New Zealand; the Research Council of Norway; the Kleberg Foundation; and the National, Texas and South Dakota Beef Check-off Funds.

The Bovine HapMap Project was led by Drs Richard Gibbs and Curt Van Tassell of the USDA and Dr Jeremy Taylor of the University of Missouri.

Funding for the Bovine HapMap Project was provided by: American Angus Association, American Hereford Association, American Jersey Cattle Association, AgResearch (New Zealand), Beef CRC and Meat and Livestock Australia for the Australian Brahman Breeders Association, Beefmaster Breeders United, The Brazilian Agricultural Research Corporation (Embrapa), Brown Swiss Association, GENO Breeding and Artificial Insemination Association - Norway, Herd Book/France Limousin Selection, Holstein Association USA, International Atomic Energy Agency - FAO/IAEA Vienna, International Livestock Research Institute – Kenya, Italian Piedmontese Breeders - Parco Tecnologico Padano, Italian Romagnola Society - Università Cattolica del Sacro Cuore, Livestock Improvement Corporation, Meat & Wool New Zealand. North American Limousin Foundation, Red Angus Association of America, The Roslin Institute for UK Guernsey, and Sygen (now Genus).

Lisa Palu | EurekAlert!
Further information:
http://www.csiro.au

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>