Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Divot Resistance in Golf Course Turfgrass

Researchers hit the links to determine the divot resistance of several types of turfgrass

Golf courses, known for their calm scenic views and precise grass patterns, take daily abuse. Divots created by golf strokes are a common occurrence, and can be a costly problem for golf course maintenance operations. Although previous research has identified differences in divot recovery across species of bermudagrass and zoysiagrass, little is known about divot resistance.

Scientists at Purdue University and the University of Arkansas evaluated 12 cultivars of bermudagrass and zoysiagrass in a field experiment conducted in Fayetteville, Arkansas. Two golfers each hit three golf balls on each plot. The divots created by their shots were rated visually for divot type and severity, and the volume of displaced soil was measured.

The primary objective of this experiment was to quantify the divot resistance for various turfgrass cultivars. Researchers also compared evaluation methods for quantifying divot resistance. This study was published in the July/August 2011 issue of Crop Science.

‘Riviera’ bermudagrass allowed the largest volume per divot, while the smallest divots were observed with ‘Cavalier’, ‘Diamond’, and ‘Zorro’ zoysiagrass. The four methods used to evaluate divot resistance provided similar findings among the different grass cultivars and species tested.

“Due to the ease and speed as well as lower measurement variability of evaluating divot resistance, a visual rating for divot severity or a Turfgrass Shear Tester are recommended for future work in divot resistance,” explained Jon Trappe, a Purdue professor and the author of this study.

The results from this study demonstrate the differences and similarities in divot resistance that exist among various grass cultivars. Cultivars that are more resistant to divoting can help reduce maintenance inputs and costs. The research also demonstrates the need for evaluating the combination of resistance and recovery of divoting, as some grass cultivars have both improved resistance and recovery.

This research was partially funded by the Arkansas Turfgrass Association and the Golf Course Superintendents Association of Arkansas.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at

Crop Science is the flagship journal of the Crop Science Society of America. Original research is peer-reviewed and published in this highly cited journal. It also contains invited review and interpretation articles and perspectives that offer insight and commentary on recent advances in crop science. For more information, visit

The Crop Science Society of America (CSSA), founded in 1955, is an international scientific society comprised of 6,000+ members with its headquarters in Madison, WI. Members advance the discipline of crop science by acquiring and disseminating information about crop breeding and genetics; crop physiology; crop ecology, management, and quality; seed physiology, production, and technology; turfgrass science; forage and grazinglands; genomics, molecular genetics, and biotechnology; and biomedical and enhanced plants.

CSSA fosters the transfer of knowledge through an array of programs and services, including publications, meetings, career services, and science policy initiatives.

Sara Uttech | EurekAlert!
Further information:

Further reports about: Arkansas crop crop science molecular genetic turfgrass

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>