Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Divot Resistance in Golf Course Turfgrass

11.08.2011
Researchers hit the links to determine the divot resistance of several types of turfgrass

Golf courses, known for their calm scenic views and precise grass patterns, take daily abuse. Divots created by golf strokes are a common occurrence, and can be a costly problem for golf course maintenance operations. Although previous research has identified differences in divot recovery across species of bermudagrass and zoysiagrass, little is known about divot resistance.

Scientists at Purdue University and the University of Arkansas evaluated 12 cultivars of bermudagrass and zoysiagrass in a field experiment conducted in Fayetteville, Arkansas. Two golfers each hit three golf balls on each plot. The divots created by their shots were rated visually for divot type and severity, and the volume of displaced soil was measured.

The primary objective of this experiment was to quantify the divot resistance for various turfgrass cultivars. Researchers also compared evaluation methods for quantifying divot resistance. This study was published in the July/August 2011 issue of Crop Science.

‘Riviera’ bermudagrass allowed the largest volume per divot, while the smallest divots were observed with ‘Cavalier’, ‘Diamond’, and ‘Zorro’ zoysiagrass. The four methods used to evaluate divot resistance provided similar findings among the different grass cultivars and species tested.

“Due to the ease and speed as well as lower measurement variability of evaluating divot resistance, a visual rating for divot severity or a Turfgrass Shear Tester are recommended for future work in divot resistance,” explained Jon Trappe, a Purdue professor and the author of this study.

The results from this study demonstrate the differences and similarities in divot resistance that exist among various grass cultivars. Cultivars that are more resistant to divoting can help reduce maintenance inputs and costs. The research also demonstrates the need for evaluating the combination of resistance and recovery of divoting, as some grass cultivars have both improved resistance and recovery.

This research was partially funded by the Arkansas Turfgrass Association and the Golf Course Superintendents Association of Arkansas.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at https://www.crops.org/publications/cs/articles/51/4/1793.

Crop Science is the flagship journal of the Crop Science Society of America. Original research is peer-reviewed and published in this highly cited journal. It also contains invited review and interpretation articles and perspectives that offer insight and commentary on recent advances in crop science. For more information, visit www.crops.org/publications/cs

The Crop Science Society of America (CSSA), founded in 1955, is an international scientific society comprised of 6,000+ members with its headquarters in Madison, WI. Members advance the discipline of crop science by acquiring and disseminating information about crop breeding and genetics; crop physiology; crop ecology, management, and quality; seed physiology, production, and technology; turfgrass science; forage and grazinglands; genomics, molecular genetics, and biotechnology; and biomedical and enhanced plants.

CSSA fosters the transfer of knowledge through an array of programs and services, including publications, meetings, career services, and science policy initiatives.

Sara Uttech | EurekAlert!
Further information:
http://www.crops.org

Further reports about: Arkansas crop crop science molecular genetic turfgrass

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>