Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Diversity in a monoculture


Functional differences within a species ensure its survival and improve the productivity of the whole ecosystem. Scientists at the Max Planck Institute for Chemical Ecology in Jena, Germany, demonstrated in field experiments with Nicotiana attenuata plants that it is sufficient to alter the expression of certain defense genes in individual plants to protect the whole population and to alter the diversity of the ecosystem as a whole.

Modern, machine-friendly agriculture is dominated by monocultures. One single cultivar – one genotype of a crop species – is cultivated on large areas.

Experimental setup with plants whose defense genes were expressed differently.

Meredith Schuman / Max Planck Institute for Chemical Ecology / eLife

Favored cultivars are optimized for high yields and often contain only few natural plant defense compounds. Unfortunately, these extensive monocultures of identical plants can become an ecological wasteland and cause permanent damage to the ecosystem, especially when combined with blanket application of fertilizer and pesticides.

Scientists at the Max Planck Institute for Chemical Ecology in Jena, Germany, demonstrated in field experiments with Nicotiana attenuata plants that it is sufficient to alter the expression of certain defense genes in individual plants to protect the whole population and to alter the diversity of the ecosystem as a whole. (eLife, April 2015)

The term biodiversity is often used as a synonym for species diversity. However, this is not entirely correct, because apart from the diversity of different plant and animal species the term also includes variations within the same species. How well a plant develops, how it adapts to its environment or copes with climatic conditions and natural enemies, depends on its genes.

What a particular gene does in a plant, on the other hand, depends on where and how the plant lives: isolated, in dense populations, in the center or the edge of a population, in what environment. If we bear in mind that plants may have about 30,000 genes, which can be expressed quite differently depending on time and location or other varying conditions, it becomes clear that an uncountable number of combinations is possible just as a result of variable gene expression, even within one single species.

The project group “Ecological functions of plant secondary metabolites” headed by Meredith Schuman, which is associated with the German Centre for Integrative Biodiversity (iDiv) Halle-Jena-Leipzig, is studying the diversity of these combinations in functionally different, but genetically near-identical plants. The researchers use the tobacco plant Nicotiana attenuata. This wild tobacco species, also called coyote tobacco, employs surprisingly versatile and sophisticated defense mechanisms to fend off herbivores. Large parts of its genome have already been sequenced.

For their experiments Meredith Schuman and her colleagues used tobacco plants which had been altered in the expression of certain defense genes, namely LOX2, LOX3 and TPS10. These three genes mediate important direct (LOX3) and indirect defenses (LOX2, LOX3, and TPS10). By silencing or over-expressing these genes in different combinations the scientists produced plants that were genetically identical except for the manipulation of those specific genes, and differed considerably with regard to an important ecological function: the ability to defend themselves.

Indirect defenses of tobacco plants include volatiles which function as messenger molecules by informing predators about the presence of herbivores. Predators can then find their prey more easily and plants can get rid of their enemies. These odor molecules can travel long distances, which is why the whole neighborhood might benefit from the attracted predators, even if only one single plant produces the volatiles. “Variations in single plant genes can have large effects for whole plant populations when those genes themselves have important ecological functions”, Meredith Schuman explains.

Together with wild-type tobacco plants, plants which had been altered in the expression of the three defense genes were planted out in small populations in their natural habitat in the Great Basin Desert in Utah, USA, where they were monitored over a period of time. The researchers found that the populations of herbivores and their natural enemies changed in the neighborhood and on plants, depending on the combination of functionally diverse plants. However, changes were often observed in whole populations, not on individual plants.

One of the observations the scientists made came as a real surprise: In the vicinity of TPS10-expressing plants, which produce the volatile trans-α-bergamotene (TAB) that attracts predators, infestation of plants by the stem-boring weevil Trichobaris mucorea – whose larvae live hidden from predators inside stems – more than doubled. “This result shows how these info molecules can be double-edged swords”, says Ian Baldwin, director of the Department of Molecular Ecology and a pioneer of ecological genetics. “They benefit plants when they attract predators, but they are also a detriment when the odor brings herbivores like the weevil on the scene. This is why a plant only releases the chemical cry for help when it is attacked by the herbivore it wants to have killed”.

According to the scientists, functional diversity based on variation in gene expression can be compared to species diversity in certain habitats as far as ecosystem services are concerned. “Functional diversity means nothing else than the ability of various individuals of one species to perform different ecological tasks. Having everyone doing the same thing is rarely the best way for a species to maximize its ability to produce successful grandchildren, or in other words, it is Darwinian fitness”, explains Ian Baldwin.

The researchers even go one step further by indicating that their findings can be utilized in modern agriculture. “Varying the expression of just a few genes in just a few individuals can have large protective effects for the whole field”, says Meredith Schuman. “We hereby suggest an economically tenable way to recover some of the lost benefits of biodiversity for the vast expanses of land which have already been converted from natural, biodiverse habitats into agricultural monocultures”.

According to estimates of the United Nations, the world’s current population of over 7.2 billion people will have reached 10 billion by the end of the century, and all these people need to be fed. The demand for food will increase constantly with the growing population. Basic knowledge derived from research in molecular plant ecology may contribute to a more sustainable use of agricultural land and to a better adaptation of crops to the given natural environments. [AO]

Original Publication:
Schuman, M. C., Allmann, S., Baldwin, I. T. (2015). Plant defense phenotypes determine the consequences of volatile emission for individuals and neighbors. eLife, 4, e04490, doi: doi:10.7554/elife/04490

Further Information:
Ian T. Baldwin, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, Germany, +49 3641 57-1101, E-Mail
Meredith C. Schuman, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, Germany, +49 3641 57-1116, E-Mail

Contact and Picture Requests:
Angela Overmeyer M.A., Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, Germany, +49 3641 57-2110, E-Mail

Download of high resolution images via

Weitere Informationen: (Department of Molecular Ecology)

Angela Overmeyer | Max-Planck-Institut für chemische Ökologie

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>