Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diversifying crops may protect yields against a more variable climate

01.03.2011
Recommendations could suppress pest and pathogen outbreaks and benefit farmers economically

A survey of how farmers could protect themselves by growing a greater diversity of crops, published in the March issue of BioScience, has highlighted economical steps that farmers could take to minimize the threat to crops from global climate change, including a greater frequency of extreme climate events.

Adaptation to ongoing climate change is considered a policy priority for agriculture. The survey, by Brenda B. Lin of the Australian Commonwealth Scientific and Industrial Research Organization, documents multiple instances of farmers protecting economically important crops, such as rice and other cereals, alfalfa, and coffee, from outbreaks of pests and disease, often associated with climate change, or simply from changed physical conditions. The farmers succeeded by switching from growing a single variety of crop to growing a broader range of species or varieties, either at the same time or in rotation, or by introducing structural variety into uniform fields.

Such techniques work, in general, because they make it harder for pathogens and pests to spread, and they may modulate climate extremes the crops experience. Not all attempts at agricultural diversification lead to such benefits, Lin points out. Yet increasingly, farmers have access to crop modeling techniques that can evaluate when a given adaptation technique might provide an economic benefit. Because accurate modeling requires extensive knowledge of on-the-ground data, such as soil profiles for water and nutrients, Lin argues for the development of extension and research staff who can assist farmers in gaining the information they need to use modeling techniques for adaptation.

After noon EST on 1 March and for the remainder of the month, the full text of the article will be available for free download through the copy of this Press Release available at www.aibs.org/bioscience-press-releases/.

BioScience, published monthly, is the journal of the American Institute of Biological Sciences (AIBS). BioScience publishes commentary and peer-reviewed articles covering a wide range of biological fields, with a focus on "Organisms from Molecules to the Environment." The journal has been published since 1964. AIBS is an umbrella organization for professional scientific societies and organizations that are involved with biology. It represents some 200 member societies and organizations with a combined membership of about 250,000.

The complete list of peer-reviewed articles in the March 2011 issue of BioScience is as follows:

Resilience in Agriculture through Crop Diversification: Adaptive Management for Environmental Change by Brenda B. Lin

The Challenges of Integrating Oxidative Stress into Life-history Biology by Caroline Isaksson, Ben C. Sheldon, and Tobias Uller

Soundscape Ecology: The Science of Sound in the Landscape by Bryan C. Pijanowski, Luis J. Villanueva-Rivera, Sarah L. Dumyahn, Almo Farina, Bernie L. Krause, Brian M. Napoletano, Stuart H. Gage, and Nadia Pieretti

Tracking the Oxidative and Nonoxidative Fates of Isotopically Labeled Nutrients in Animals by Marshall D. McCue

Media Literacy as a Key Strategy toward Improving Public Acceptance of Climate Change Science by Caren B. Cooper

Tim Beardsley | EurekAlert!
Further information:
http://www.aibs.org

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>