Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery Should Save Wheat Farmers Millions of Dollars

10.10.2013
Epigenetic factors identified as key to preventing loss of wheat caused by rain and high humidity (and should lead to better beer too).

The global wheat industry sometimes loses as much as $1 billion a year because prolonged rainfall and high humidity contribute to grains germinating before they are fully mature. The result is both a lower yield of wheat and grains of inferior quality.

This phenomenon, known as pre-harvest sprouting or PHS, has such important economic repercussions for farmers around the world that scientists have been working on finding a solution to the problem for at least a couple of decades. Their focus has been on genetic factors, and on the interaction between genotypes and the environment as they have tried to breed wheat that is resistant to PHS, but with little success so far.

But now, findings by a McGill team suggest that the solution may lie not with genetics alone, but rather with a combination of genetic and epigenetic factors. The team, led by Prof. Jaswinder Singh of McGill’s Department of Plant Science, has identified a key gene that acts as a switch to determine how a particular plant will respond to high humidity and excess rainfall by either germinating early (PHS) or not. This switch is to be found in a key gene, ARGONAUTE4_9, in the “RNA dependent DNA Methylation” pathway (RdDM).

“The complex RdDM machinery is composed of several proteins that guide the genome in response to growth, developmental and stress signals. It’s a bit like the plant’s brain,” says Singh. “Although in the past scientists have identified it as the pathway that regulates the way a variety of genes are expressed, until now no one had made the link with PHS.”

The McGill team made the discovery by using a variety of genomic and molecular tools to identify specific ARGONAUTE4_¬9 genes, and then compare the way that these genes are expressed in PHS resistant versus PHS susceptible varieties of wheat.

“This discovery is important for other cereals like barley as well as for wheat,” said Surinder Singh, a Ph.D. student and one of the authors of this study, currently working in Professor Singh’s laboratory. “This means that not only should we be able to avoid the ugly bread and sticky crumbs produced by PHS wheat in future, we should also end up with better beer. “

The research opens up a whole new area of exploration for scientists as they try to increase the yields of wheat and decrease losses due to excessively humid conditions. It should also save farmers and governments around the world significant amounts of money in the future.

The study, “Polymorphic homoeolog of key gene of RdDM pathway, ARGONAUTE4_¬9 class is associated with Pre-harvest Sprouting in wheat (Triticum aestivum L.)” was just published in the journal “PLOS ONE”. To read the full article: http://dx.plos.org/10.1371/journal.pone.0077009

The research was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC).

To contact the researcher directly: Jaswinder.singh@mcgill.ca

Katherine Gombay | Newswise
Further information:
http://www.mcgill.ca

More articles from Agricultural and Forestry Science:

nachricht Microjet generator for highly viscous fluids
13.02.2018 | Tokyo University of Agriculture and Technology

nachricht Sweet route to greater yields
08.02.2018 | Rothamsted Research

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

A Keen Sense for Molecules

23.02.2018 | Physics and Astronomy

“Laser Technology Live” at the AKL’18 International Laser Technology Congress in Aachen

23.02.2018 | Trade Fair News

Newly designed molecule binds nitrogen

23.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>