Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First discovery of bilirubin in a flower announced

09.09.2010
Previously known as animal-only pigment, bilirubin now confirmed in Bird of Paradise flower

A research team led by Cary Pirone from the Department of Biological Sciences at Florida International University has identified bilirubin in the popular Bird of Paradise plant. The breakthrough study, published in the September 2010 issue of the American Society for Horticultural Science's journal HortScience, provides new insights into color production in this iconic tropical plant.


Bilirubin has been discovered in the beautiful and iconic Bird of Paradise flower. Credit: Photo by David Lee

Previously thought to be an "animal-only" pigment, bilirubin is best known as the yellowish hue associated with bruises and jaundice sufferers. In 2009 the FIU researchers found bilirubin in the arils of Strelitzia nicolai, the white Bird of Paradise tree. The incredible discovery—that bilirubin exists in both plants and animals—put Pirone's research on the scientific map. The current study expands the original research and reveals new insights into the presence of animal pigment in flowers. Advisor David Lee credits Pirone for her persistence and scientific acumen. "Cary has made a remarkable discovery", he noted, adding that it was Pirone's persistence and curiosity that persuaded colleagues that she was on the right track.

Strelitzia reginae Aiton, the Bird of Paradise plant, is known for its vibrant orange and blue inflorescences. Native to South Africa, it is widely cultivated in warm temperate and tropical regions. Aside from the widely recognized shape of its flower, which resembles the head of a bird, Strelitzia reginae is also admired for its brilliant floral coloration. In contrast to its showy flowers, the fruit of the Bird of Paradise is pale and partially obscured by the bract during development. When it matures, however, the capsule breaks open to reveal intensely colored orange arillate seeds. Remarkably, the distinct aril color can remain unchanged for decades after the plant dies.

Using high-performance liquid chromatography (HPLC) and HPLC/electrospray ionization–tandem mass spectrometry, the research team discovered bilirubin to be the primary aril pigment of Strelitzia reginae and found low concentrations of bilirubin in the plant's sepals. In mature aril tissue, bilirubin was present as granular bodies irregularly distributed throughout the cell. In mature sepal tissue, the researchers observed elongate structures that were previously identified as containing carotenoids.

"This research is the first discovery of bilirubin in a flower; it verifies the presence of bilirubin in a plant species other than Strelitzia nicolai. With further research on the function, distribution, and synthesis of bilirubin in plants, the information may be useful for practical applications such as the manipulation of color through breeding and genetics", the researchers concluded.

The findings will likely have broad appeal among flower lovers, observed Lee. "When you discover something this significant about something this familiar (the Bird of Paradise flower), the story has power".

The complete study and abstract are available on the ASHS HortScience electronic journal web site: http://hortsci.ashspublications.org/cgi/content/abstract/45/9/1411

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>