Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovering soybean plants resistant to aphids and a new aphid

12.08.2009
This year farmers in the Midwest are growing a new variety of soybeans developed by University of Illinois researchers that has resistance to soybean aphids. However, in addition to the resistant plants, U of I researchers also discovered a new soybean aphid which is not controlled by this resistance.

Soybean aphids made their first appearance in North America in the summer of 2000, resulting in tremendous crop losses for farmers. U of I researchers began immediately searching for a variety of soybean that is resistant to the new pest.

Dowling and Jackson were the first two resistant varieties to be identified. "We have the U. S. Soybean Germplasm collection here at Illinois. It houses about 18,000 different accessions," said Glen Hartman, soybean plant pathologist with the USDA and U of I. "We didn't screen all 18,000, but we went through a small set of 4,000 to 5,000 and that's where Jackson and Dowling came from. We knew they were resistant, but we had to do the crossings and look at the inheritance patterns to figure out whether the resistance was because of a single gene or multiple genes."

With additional screening, a third soybean resistant to aphids was found -- a Japanese variety known as PI 200538. "After we mapped the genes from these sources, we discovered that Jackson and Dowling had genes mapping to the same place on a chromosome and the PI had a gene mapping to a different place. This means that Jackson and Dowling likely have the same resistance gene and PI 200538 has a different gene we can use in breeding."

Diers said that both Jackson and Dowling originated in the southern United States, so neither could be grown to seed in the Midwest. They used traditional breeding techniques together with marker-assisted selection to quickly breed the resistance genes into varieties that are adapted to the Midwest.

"Because the aphid resistance is conferred by a single gene in the resistance sources, we were able to breed these genes into Midwest-adapted varieties quickly and easily," Diers said. "We can complete three crossing generations a year by using both greenhouses and fields. This year is a milestone because we now have a variety that's being commercially produced that carries the resistance gene from Dowling. This is its first commercial production of an aphid-resistant variety in the Midwest."

Unfortunately, the celebration didn't last long. While studying soybean plants, they discovered a new type of aphid. "We were excited about finding the resistance. We discovered this gene from Dowling and Jackson, bred it into varieties and we 'hoped that we could solve the aphid problem,' but of course things are never that simple," Diers said. "We found that there are different biotypes of soybean aphids, including a biotype that can overcome the resistance gene for Dowling."

In tests, this new aphid was able to infest Dowling as well as it could any susceptible genotype of soybean. "We don't know how widespread those aphids are or whether or not this is actually going to occur in fields, but certainly it's something to be concerned about because we know that resistance isn't going to be perfect," Diers said.

The good news is that the PI 200538 gene for resistance is different than the one in Dowling and Jackson. "We found that this second resistance gene in the PI protects the plants against this new biotype of aphid. We are currently breeding the PI 200538 gene into varieties, but it will be at least a few years before any varieties with this gene will be released."

Even after the appearance of this new aphid, Diers is still optimistic. "We have one variety with the Dowling resistance gene that's being commercialized this year. A company is increasing seed of a second variety with the Dowling gene that should be commercialized next year. So we'll have two varieties available to growers." He explained that the U of I aphid-resistant germplasm and marker technology is licensed to private seed companies who are using it to breed their own varieties."

The first aphid-resistant variety developed and released by the University of Illinois is Round-up Ready, and the second is a conventional, non-Round-up Ready variety. Diers says "we believe that the aphid resistance in a conventional background will be especially helpful to organic soybean producers because currently if they have aphids in their fields, they don't have any practical method of control because they cannot spray insecticides. I've been contacted by some organic growers in northern Iowa and southern Minnesota who are ready to give up growing organic soybeans because aphids have caused such large losses."

Diers said that resistant varieties can save farmers money and help the environment. "Farmers have been controlling soybean aphids by spraying insecticides. If we can deploy resistance, this could reduce the use of these insecticides, which will have many environmental benefits."

The message to farmers is that there are going to be varieties with soybean aphid resistance available. "The tests we've done have shown that we have less aphid reproduction on these resistant lines than on susceptible lines," Diers said. "But so far the resistance isn't a magic bullet. You can't grow these aphid-resistant varieties and not scout for aphids because there may be aphids in your fields that can defeat the resistance."

The other unknown is how adaptable aphids will be to these new varieties. "Our hope is that we can combine these two genes and get more durable resistance," Diers said. "We hope that we can develop a plant with a number of resistance genes so that if any one of them breaks down, the plant would still be resistant."

This work was supported by funding from the United Soybean Board and the Illinois Soybean Association. "Without funding from these organizations, our research on aphid resistance and the development of aphid-resistant varieties would not have been possible," says Diers.

The work appeared in the following journals: Soybean Aphid Resistance Genes in the Soybean Cultivars Dowling and Jackson Map to Linkage Group M was published in a 2007 issue of Mol Breeding. Discovery of Soybean Aphid Biotypes was published in the May-June 2008 issue of Crop Science. Inheritance of Resistance to the Soybean Aphid in Soybean PI 200538 was published in the July-August 2009 issue of Crop Science. Funding was provided by the United Soybean Board and the Illinois Soybean Association. Yan Li, Curtis B. Hill, Shawn R. Carlson, Ki-Seung Kim, M.A. Rouf Mian, and Laura Crull contributed to the research.

Debra Levey Larson | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>