Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Developing Corn for Warmer Climate Is Focus of Research

04.07.2011
The prospect of rising temperatures in Iowa and the Midwest is predicted to lead to a dramatic decline in corn yield. With a $5 million grant from the U.S. Department of Agriculture, Iowa State University researchers are looking to develop a corn variety that maintains the region’s high yields even as temperatures rise.

Alan Myers, professor, and Tracie Hennen-Bierwagen, associate scientist, both from the Department of Biochemistry, Biophysics, and Molecular Biology, hope to find a biochemical solution to warmer temperature yield loss.

The study is part of the response within the scientific community to challenges issued by the National Research Council in their report, “New Biology for the 21st Century: Ensuring the United States Lead the Coming Revolution.”

This report recommends how best to nationally capitalize on recent technological and scientific advances that have allowed biologists to integrate biological research findings, collect and interpret vastly increased amounts of data, and predict the behavior of complex systems.

As part of the USDA implementation of this report, Iowa State researchers are part of a multidisciplinary team addressing the challenge of generating food plants that grow sustainably in changing environments.

“The corn industry requires traits that allow yield to be maintained at higher temperatures than we encounter now,” said Myers.

Corn yield can drop by up to 25 percent when sustained temperatures rise from 90 to 95 degrees during corn grain filling, research shows.

Grain filling is the development stage when the kernel shows the most growth.

Yield losses of up to 40 percent are projected in tropical and subtropical areas by the end of the 21st century.

With the prospect of climate change altering growing conditions in the Midwest, Myers and Hennen-Bierwagen say now is the time to research new solutions.

“We’re excited about the proactive approach to solve problems that haven’t yet arisen,” said Myers. “It is comforting that the USDA is doing this rather than putting out fires as they arise. They and we are trying to anticipate the problems and be prepared for them.”

Corn yield is lower at warmer temperatures for several reasons. One important issue that scientists don’t yet understand is the how temperature affects seed metabolism, according to Hennen-Bierwagen.

“The plant part functions fine as long as irrigation is adequate,” she said. “The plant sends sugar up to the seed at normal levels. But the seed is not able to make that sugar into starch as efficiently at high temperatures. Something is happening there and we don’t know what. That’s our focus.”

As part of a multidisciplinary team, Myers and Hennen-Bierwagen joined forces with researchers from the University of Wisconsin, Madison and the University of Florida, Gainesville.

With laboratories in three climate zones, the group will be able to test plants under differing conditions. The principal investigator for the overall research is Curt Hannah from the University of Florida.

Myers, Hennen-Bierwagen and the other researchers will examine the entire maize (corn) genome to try to identify factors that could be responsible for the problem of lower yield. In addition, they will test a few target genes in maize that they already suspect are likely to be important in the yield response to temperature, said Myers.

Genetically engineered corn lines designed to sustain present yield levels in higher temperatures will likely be ready for introduction in five to 10 years.

Hennen-Bierwagen also said that if they can locate the responsible genes, their findings could be used for other crops.

“The basic knowledge we get from this could be applied elsewhere,” she said. “The yield loss in high temperature is seen in numerous crops. Possibly, there could be uses for these findings in wheat, rice or cassava. These are important staple crops in many places around the world.”

Previous funding provided to the Myers and Hennen-Bierwagen laboratory through ISU’s Plant Sciences Institute was important for generating preliminary results needed to obtain USDA funding.

Alan Myers, Biochemistry, Biophysics, and Molecular Biology, 515-294-9548, ammyers@iastate.edu

Alan Myers | Newswise Science News
Further information:
http://www.iastate.edu

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>