Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Detroit’s urban farms could provide a majority of produce for local residents

17.11.2010
Transforming vacant urban lots into farms and community gardens could provide Detroit residents with a majority of their fruits and vegetables.

As city officials ponder proposals for urban farms, a Michigan State University study indicates that a combination of urban farms, community gardens, storage facilities and hoop houses – greenhouses used to extend the growing season – could supply local residents with more than 75 percent of their vegetables and more than 40 percent of their fruits.

The study, which appears in the current issue of The Journal of Agriculture, Food Systems, and Community Development, evaluates many aspects of the production potential of the Motor City’s vacant properties, from identifying available parcels of land to addressing residents’ attitudes toward blending agrarian traits with their urban lifestyles.

“What’s clear from our production analysis is that even with a limited growing season, significant quantities of fresh fruits and vegetables eaten by Detroiters could be grown locally,” said Kathryn Colasanti, the graduate student who led the study for the C.S. Mott Group for Sustainable Food Systems at MSU. “And investments in produce storage facilities and hoop houses would increase this capacity substantially.”

As part of the analysis, MSU cataloged available land that had no existing structures. Using aerial imagery and the city’s database of vacant property, researchers identified 44,085 available vacant parcels, which span 4,848 acres. To paint a more realistic picture, the database excluded land in and around parks, golf courses, cemeteries, churches, schools and more, said Mike Hamm, who leads the C.S. Mott Group for Sustainable Food Systems.

“Our totals are conservative,” he said. “But it may be closer to representing the quantity of land more readily available for urban farms and gardens because these parcels are publicly owned and clear of any buildings.”

Along with pinpointing properties, the study also addressed public opinion on the issue. Different groups value urban farms for different reasons. Some groups see farms and gardens as a means to provide for their families and to bring in some additional income. People connected with urban agriculture organizations emphasized how such efforts strengthen neighborhood bonds. Some senior citizens and youth embraced the concept as a way to access higher-quality foods.

These attitudes could be tempered by a variety of factors related to implementing urban farms and gardens, such as increased activity and noise, perimeter fencing, free gardens used to draw neighborhoods together versus those that sell their products profit, altering the urban landscape with a semi-rural feel and more.

“These different opinions can co-exist,” Hamm said. “But because they could also come into conflict, there is a need to engage in diverse communities to create a vision for the form and scale of urban agriculture in Detroit.”

The study was supported in part by the W.K. Kellogg Foundation and the Fair Food Foundation.

Michigan State University has been advancing knowledge and transforming lives through innovative teaching, research and outreach for more than 150 years. MSU is known internationally as a major public university with global reach and extraordinary impact. Its 17 degree-granting colleges attract scholars worldwide who are interested in combining education with practical problem solving.

Layne Cameron | EurekAlert!
Further information:
http://news.msu.edu/story/8600/
http://www.msu.edu

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>