Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Demystifying yield fluctuations for greenhouse tomatoes

16.04.2010
Model based on solar radiation accurately predicts yields

Growing tomatoes is not always easy. In many parts of the world summers are too hot to grow tomatoes in greenhouses, even those with intricate cooling systems.

In cooler climates where tomatoes are grown year-round in production greenhouses, yield fluctuations are still challenging for producers who need to fulfill orders and predict labor costs. Finding accurate methods for predicting greenhouse tomato yields is at the forefront of growers' concerns.

A new research study may take the speculation out of yield predictions and offer help for tomato producers. Tadahisa Higashide, a scientist at Japan's National Agricultural and Food Research Organization, published the study in a recent issue of HortScience. The research indicated that fluctuations in fruit number and yield under greenhouse conditions could be predicted on the basis of fluctuations in solar radiation.

According to the Higashide, development of an accurate method to predict weekly fluctuation in tomato yield, especially during summer, is still a big challenge; tomato yields fluctuate almost simultaneously in many fields in an area, although growers, greenhouses, plant growth stages, and crop management differ. Yield fluctuations can cause prices to fluctuate, purchasers to look to competing suppliers, and inadequate distributions of labor—complications that have an impact on revenues and consumer satisfaction. Accurate prediction of yield fluctuations would help growers revamp their marketing approaches (e.g., cooperative shipping with a grower in another area to fill supply gaps) or implement environmental controls in their greenhouses.

The study was designed to develop a method for predicting fluctuations in weekly tomato yield under high temperatures. Higashide investigated the relationships between environmental data and tomato yield and whether these relationships could be used to predict yield fluctuations. The experiments were conducted using the popular Japanese tomato cultivar 'Momotaro 8' grown in two commercial "sloped" greenhouses in Higashimiyoshi, Tokushima, Japan.

Fluctuations in yield were caused mainly by the variation in fruit number rather than fruit weight. "The number of harvested fruit and the yield of plants grown in summer and fall were significantly and positively correlated with solar radiation during the days before anthesis (the period during which a flower is fully open or in full bloom)", stated Higashide.

Although the fruit number and yield were also significantly correlated with air temperature before anthesis, the correlations were weaker than the correlations with solar radiation. There was no significant correlation between the air temperature in the periods encompassing 3 weeks before harvesting and the fruit number and yield. Therefore, fluctuations in fruit number and yield could be predicted by a model based on the solar radiation from 4 to 10 days before anthesis.

Higashide summarized the experiment's outcomes, noting that fluctuations in the weekly fruit number and yield for tomatoes grown in greenhouses during the summer and fall were strongly and significantly correlated with fluctuations in solar radiation during the periods encompassing 12 to 0 days before anthesis. "On the basis of fluctuations in solar radiation, fluctuations in fruit number and yield under these conditions could be predicted. Thus, solar radiation at the period before anthesis was one of the important factors in prediction of tomato yield under warm greenhouse conditions."

The complete study and abstract are available on the ASHS HortScience electronic journal web site: http://hortsci.ashspublications.org/cgi/content/abstract/44/7/1874

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application. More information at ashs.org

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org

More articles from Agricultural and Forestry Science:

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

nachricht New rice fights off drought
04.04.2017 | RIKEN

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>