Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Defying Climate Change, Ensuring Maize Stability

22.01.2010
Climate change is an ever-present threat to agriculture. Many experts predict sudden and unexpected changes in climatic conditions will bring new stresses to the environment. Ensuring the stability of crop varieties across environments and conditions is a critical breeding goal when dealing with the uncertainty of climate change.

Maize is one of three primary crops worldwide. Slight changes in climatic conditions may cause substantial yield losses, resulting in great food shortages and economic losses. Consequently, numerous breeding programs are currently evaluating maize stability under different climatic stress conditions. However, many breeders design yield improvement programs without first conducting preliminary studies to determine which environmental factors actually limit the crop and which genetic parameters are essentially affected.

Scientists in northwestern Spain, from the Spanish National Council (CSIC), have investigated the effects of multiple climatic stresses on maize grain yield. The study, which was funded by the Spanish Plan of Research and Development, evaluated 76 Spanish populations of maize, along with five commercial hybrids. Research was conducted at three distinct locations over three years, for a total of nine environments. Evaluations were made under multiple stress conditions, including a shortage of water, cold temperature, and low nutrient availability. No pesticide or herbicide treatments were applied during the growing cycle, and weeding was limited in order to allow competition. Data on several traits related to plant development and yield were collected on each plot. Environmental variables were also recorded to monitor variations in temperature and rainfall during the growth season.

The results of the study, which are published in the January/February 2010 issue of Crop Science, illuminate the effect of genotype and environment on yield stability, as well as the magnitude of genotype-environment interactions. Researchers determined that commercial hybrids had higher yield and stability than most populations, suggesting that breeding programs focusing on yield have released hybrids with high yield and stability under different stress conditions. Some non-hybrid populations also produced a reasonable compromise between yield and stability. If yield stability under stress conditions is a breeding goal, researchers recommended that several climatic variables, especially those related to high temperatures, and genotypic traits, such as kernel depth and ear length, be considered.

Although hybrids are more stable under diverse climatic conditions, it is important to remember that old populations are the reservoirs of genes from which these hybrids have been developed. In order to continue the development of improved hybrids, research with populations must also be emphasized. However, old populations need to be intensely improved for yield if they are going to be used for future breeding programs.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://crop.scijournals.org/cgi/content/abstract/50/1/51.

Crop Science is the flagship journal of the Crop Science Society of America. Original research is peer-reviewed and published in this highly cited journal. It also contains invited review and interpretation articles and perspectives that offer insight and commentary on recent advances in crop science. For more information, visit http://crop.scijournals.org

The Crop Science Society of America (CSSA), founded in 1955, is an international scientific society comprised of 6,000+ members with its headquarters in Madison, WI. Members advance the discipline of crop science by acquiring and disseminating information about crop breeding and genetics; crop physiology; crop ecology, management, and quality; seed physiology, production, and technology; turfgrass science; forage and grazinglands; genomics, molecular genetics, and biotechnology; and biomedical and enhanced plants.

CSSA fosters the transfer of knowledge through an array of programs and services, including publications, meetings, career services, and science policy initiatives. For more information, visit www.crops.org

Sara Uttech | Newswise Science News
Further information:
http://www.crops.org

More articles from Agricultural and Forestry Science:

nachricht Microjet generator for highly viscous fluids
13.02.2018 | Tokyo University of Agriculture and Technology

nachricht Sweet route to greater yields
08.02.2018 | Rothamsted Research

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>