Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Defying Climate Change, Ensuring Maize Stability

22.01.2010
Climate change is an ever-present threat to agriculture. Many experts predict sudden and unexpected changes in climatic conditions will bring new stresses to the environment. Ensuring the stability of crop varieties across environments and conditions is a critical breeding goal when dealing with the uncertainty of climate change.

Maize is one of three primary crops worldwide. Slight changes in climatic conditions may cause substantial yield losses, resulting in great food shortages and economic losses. Consequently, numerous breeding programs are currently evaluating maize stability under different climatic stress conditions. However, many breeders design yield improvement programs without first conducting preliminary studies to determine which environmental factors actually limit the crop and which genetic parameters are essentially affected.

Scientists in northwestern Spain, from the Spanish National Council (CSIC), have investigated the effects of multiple climatic stresses on maize grain yield. The study, which was funded by the Spanish Plan of Research and Development, evaluated 76 Spanish populations of maize, along with five commercial hybrids. Research was conducted at three distinct locations over three years, for a total of nine environments. Evaluations were made under multiple stress conditions, including a shortage of water, cold temperature, and low nutrient availability. No pesticide or herbicide treatments were applied during the growing cycle, and weeding was limited in order to allow competition. Data on several traits related to plant development and yield were collected on each plot. Environmental variables were also recorded to monitor variations in temperature and rainfall during the growth season.

The results of the study, which are published in the January/February 2010 issue of Crop Science, illuminate the effect of genotype and environment on yield stability, as well as the magnitude of genotype-environment interactions. Researchers determined that commercial hybrids had higher yield and stability than most populations, suggesting that breeding programs focusing on yield have released hybrids with high yield and stability under different stress conditions. Some non-hybrid populations also produced a reasonable compromise between yield and stability. If yield stability under stress conditions is a breeding goal, researchers recommended that several climatic variables, especially those related to high temperatures, and genotypic traits, such as kernel depth and ear length, be considered.

Although hybrids are more stable under diverse climatic conditions, it is important to remember that old populations are the reservoirs of genes from which these hybrids have been developed. In order to continue the development of improved hybrids, research with populations must also be emphasized. However, old populations need to be intensely improved for yield if they are going to be used for future breeding programs.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://crop.scijournals.org/cgi/content/abstract/50/1/51.

Crop Science is the flagship journal of the Crop Science Society of America. Original research is peer-reviewed and published in this highly cited journal. It also contains invited review and interpretation articles and perspectives that offer insight and commentary on recent advances in crop science. For more information, visit http://crop.scijournals.org

The Crop Science Society of America (CSSA), founded in 1955, is an international scientific society comprised of 6,000+ members with its headquarters in Madison, WI. Members advance the discipline of crop science by acquiring and disseminating information about crop breeding and genetics; crop physiology; crop ecology, management, and quality; seed physiology, production, and technology; turfgrass science; forage and grazinglands; genomics, molecular genetics, and biotechnology; and biomedical and enhanced plants.

CSSA fosters the transfer of knowledge through an array of programs and services, including publications, meetings, career services, and science policy initiatives. For more information, visit www.crops.org

Sara Uttech | Newswise Science News
Further information:
http://www.crops.org

More articles from Agricultural and Forestry Science:

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

nachricht Unusual soybean coloration sheds a light on gene silencing
20.06.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>